Impact of Wood Age on Termite Microbial Assemblages

. 2023 May 31 ; 89 (5) : e0036123. [epub] 20230417

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37067424

The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.

Zobrazit více v PubMed

Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. doi:10.1038/nrmicro3182. PubMed DOI

Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proc Natl Acad Sci USA 115:6506–6511. doi:10.1073/pnas.1711842115. PubMed DOI PMC

Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P. 2019. Termites can decompose more than half of deadwood in tropical rainforest. Curr Biol 29:R118–R119. doi:10.1016/j.cub.2019.01.012. PubMed DOI

Inward DJ, Vogler AP, Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967. doi:10.1016/j.ympev.2007.05.014. PubMed DOI

Chouvenc T, Šobotník J, Engel MS, Bourguignon T. 2021. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci 78:2749–2769. doi:10.1007/s00018-020-03728-z. PubMed DOI PMC

Bourguignon T, Drouet T, Šobotník J, Hanus R, Roisin Y. 2015. Influence of soil properties on soldierless termite distribution. PLoS One 10:e0135341. doi:10.1371/journal.pone.0135341. PubMed DOI PMC

Bourguignon T, Šobotník J, Dahlsjö CA, Roisin Y. 2016. The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insect Soc 63:39–50. doi:10.1007/s00040-015-0446-y. DOI

Bourguignon T, Lo N, Šobotník J, Ho SY, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dusses D, Křížková B. 2017. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34:589–597. doi:10.1093/molbev/msw253. PubMed DOI

Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol 29:3728–3734.e4. doi:10.1016/j.cub.2019.08.076. PubMed DOI

Keeling CI, Bohlmann J. 2006. Diterpene resin acids in conifers. Phytochemistry 67:2415–2423. doi:10.1016/j.phytochem.2006.08.019. PubMed DOI

Raffa KF, Aukema BH, Erbilgin N, Klepzig KD, Wallin KF. 2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Adv Phytochem 39:79–118. doi:10.1016/S0079-9920(05)80005-X. DOI

Werner RA. 1995. Toxicity and repellency of 4-allylanisole and monoterpenes from white spruce and tamarack to the spruce beetle and eastern larch beetle (Coleoptera: Scolytidae). Environ Entomol 24:372–379. doi:10.1093/ee/24.2.372. DOI

Raffa KF, Smalley EB. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102:285–295. doi:10.1007/BF00329795. PubMed DOI

Hammer TJ, Bowers MD. 2015. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14. doi:10.1007/s00442-015-3327-1. PubMed DOI

Ni J, Tokuda G. 2013. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850. doi:10.1016/j.biotechadv.2013.04.005. PubMed DOI

Douglas AE. 2009. The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47. doi:10.1111/j.1365-2435.2008.01442.x. DOI

Kirk TK, Cowling EB. 1984. Biological decomposition of solid wood, p 455–487. In Rogers R (ed), Advances in chemistry vol 207. ACS Publications, Washington, DC.

Varm A, Kolli BK, Paul J, Saxena S, König H. 1994. Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15:9–28. doi:10.1111/j.1574-6976.1994.tb00120.x. DOI

Hyodo F, Tayasu I, Inoue T, Azuma JI, Kudo T, Abe T. 2003. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193. doi:10.1046/j.1365-2435.2003.00718.x. DOI

Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci USA 110:15728–15733. doi:10.1073/pnas.1308867110. PubMed DOI PMC

Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL. 2015. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618. doi:10.1038/ncomms8618. PubMed DOI PMC

Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J, Brand WA, Fenning TM, Gershenzon J, Paetz C. 2013. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol 162:1324–1336. doi:10.1104/pp.113.218610. PubMed DOI PMC

Welte CU, de Graaf RM, van den Bosch TJ, Op den Camp HJ, van Dam NM, Jetten MS. 2016. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 18:1379–1390. doi:10.1111/1462-2920.12997. PubMed DOI

Gurung K, Wertheim B, Falcao Salles J. 2019. The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl 167:156–170. doi:10.1111/eea.12768. DOI

Six DL. 2012. Ecological and evolutionary determinants of bark beetle: fungus symbioses. Insects 3:339–366. doi:10.3390/insects3010339. PubMed DOI PMC

Raffa KF. 2014. Terpenes tell different tales at different scales: glimpses into the chemical ecology of conifer-bark beetle-microbial interactions. J Chem Ecol 40:1–20. doi:10.1007/s10886-013-0368-y. PubMed DOI

Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. doi:10.1146/annurev-ento-010814-020822. PubMed DOI PMC

Kane MD, Breznak JA. 1991. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl Environ Microbiol 57:2628–2634. doi:10.1128/aem.57.9.2628-2634.1991. PubMed DOI PMC

Tinker KA, Ottesen EA. 2016. The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl Environ Microbiol 82:6603–6610. doi:10.1128/AEM.01837-16. PubMed DOI PMC

Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. doi:10.1146/annurev-micro-092412-155715. PubMed DOI

Brune A, Ohkuma M. 2010. Role of the termite gut microbiota in symbiotic digestion, p 439–475. In Bignell D, Roisin Y, Lo N (ed), Biology of termites: a modern synthesis. Springer, Dordrecht, The Netherlands.

Dietrich C, Köhler T, Brune A. 2014. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269. doi:10.1128/AEM.04206-13. PubMed DOI PMC

Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. 2015. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295. doi:10.1111/mec.13376. PubMed DOI

Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. 2022. The functional evolution of termite gut microbiota. Microbiome 10:78. doi:10.1186/s40168-022-01258-3. PubMed DOI PMC

Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF. 2013. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006. doi:10.1007/s10886-013-0313-0. PubMed DOI

Skrodenytė-Arbačiauskienė V, Radžiutė S, Stunžėnas V, Būda V. 2012. Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int J Syst Evol Microbiol 62:942–948. doi:10.1099/ijs.0.030304-0. PubMed DOI

Dowd PF, Shen SK. 1990. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol Exp Appl 56:241–248. doi:10.1111/j.1570-7458.1990.tb01402.x. DOI

Tsui CK-M, Farfan L, Roe AD, Rice AV, Cooke JE, El-Kassaby YA, Hamelin RC. 2014. Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships. PLoS One 9:e105455. doi:10.1371/journal.pone.0105455. PubMed DOI PMC

Zhao T, Kandasamy D, Krokene P, Chen J, Gershenzon J, Hammerbacher A. 2019. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol 38:71–79. doi:10.1016/j.funeco.2018.06.003. DOI

Bartnik C, Nawrot-Chorabik K, Woodward S. 2020. Phenolic compound concentrations in Picea abies wood as an indicator of susceptibility towards root pathogens. For Path 50:e12652. doi:10.1111/efp.12652. DOI

Germida JJ. 1988. Growth of indigenous Rhizobium leguminosarum and Rhizobium meliloti in soils amended with organic nutrients. Appl Environ Microbiol 54:257–263. doi:10.1128/aem.54.1.257-263.1988. PubMed DOI PMC

Balkwill D, Fredrickson J, Romine M. 2006. Sphingomonas and related genera, p 605–629. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (ed), The prokaryotes: a handbook on the biology of bacteria. Springer, New York, NY.

Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C. 2003. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272. doi:10.1128/JB.185.24.7266-7272.2003. PubMed DOI PMC

Xu LT, Lu M, Sun JH. 2016. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci 23:183–190. doi:10.1111/1744-7917.12255. PubMed DOI

Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, Sillam-Dussès D, Gawron P, Halder R, Wilmes P, Ferrer P, Gerin P, Roisin Y, Delfosse P. 2020. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol 3:275. doi:10.1038/s42003-020-1004-3. PubMed DOI PMC

Su L, Yang L, Huang S, Su X, Li Y, Wang F, Wang E, Kang N, Xu J, Song A. 2016. Comparative gut microbiomes of four species representing the higher and the lower termites. J Insect Sci 16:97. doi:10.1093/jisesa/iew081. PubMed DOI PMC

Lilburn T, Kim K, Ostrom N, Byzek K, Leadbetter J, Breznak J. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498. doi:10.1126/science.1060281. PubMed DOI

Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. 1999. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689. doi:10.1126/science.283.5402.686. PubMed DOI

Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. 2018. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci USA 115:E11996–E12004. doi:10.1073/pnas.1810550115. PubMed DOI PMC

Breznak JA, Pankratz HS. 1977. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl Environ Microbiol 33:406–426. doi:10.1128/aem.33.2.406-426.1977. PubMed DOI PMC

Dröge S, Rachel R, Radek R, König H. 2008. Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int J Syst Evol Microbiol 58:1079–1083. doi:10.1099/ijs.0.64699-0. PubMed DOI

Sethi A, Kovaleva ES, Slack JM, Brown S, Buchman GW, Scharf ME. 2013. A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. Arch Insect Biochem Physiol 84:175–193. doi:10.1002/arch.21135. PubMed DOI

Desai MS, Strassert JF, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, Brune A. 2010. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 12:2120–2132. doi:10.1111/j.1462-2920.2009.02080.x. PubMed DOI

Noda S, Hongoh Y, Sato T, Ohkuma M. 2009. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:158. doi:10.1186/1471-2148-9-158. PubMed DOI PMC

Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. 2008. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105:5555–5560. doi:10.1073/pnas.0801389105. PubMed DOI PMC

Brune A. 2012. Endomicrobia: intracellular symbionts of termite gut flagellates. Endocytobiosis Cell Res 23:11–15. https://zs.thulb.uni-jena.de/receive/jportal_jparticle_00270371.

Stingl U, Radek R, Yang H, Brune A. 2005. “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479. doi:10.1128/AEM.71.3.1473-1479.2005. PubMed DOI PMC

Zheng H, Dietrich C, Thompson CL, Meuser K, Brune A. 2015. Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.). Microbes Environ 30:92–98. doi:10.1264/jsme2.ME14169. PubMed DOI PMC

Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. 2008. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109. doi:10.1126/science.1165578. PubMed DOI

Izawa K, Kuwahara H, Kihara K, Yuki M, Lo N, Itoh T, Ohkuma M, Hongoh Y. 2016. Comparison of intracellular “Ca. Endomicrobium trichonymphae” genomovars illuminates the requirement and decay of defense systems against foreign DNA. Genome Biol Evol 8:3099–3107. doi:10.1093/gbe/evw227. PubMed DOI PMC

Inoue J-I, Saita K, Kudo T, Ui S, Ohkuma M. 2007. Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932. doi:10.1128/EC.00251-07. PubMed DOI PMC

Yuki M, Kuwahara H, Shintani M, Izawa K, Sato T, Starns D, Hongoh Y, Ohkuma M. 2015. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ Microbiol 17:4942–4953. doi:10.1111/1462-2920.12945. PubMed DOI

Desai MS, Brune A. 2012. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J 6:1302–1313. doi:10.1038/ismej.2011.194. PubMed DOI PMC

Prillinger H, Messner R, König H, Bauer R, Lopandic K, Molnar O, Dangel P, Weigang F, Kirisits T, Nakase T, Sigler L. 1996. Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes. Syst Appl Microbiol 19:265–283. doi:10.1016/S0723-2020(96)80053-1. DOI

Prillinger H, König H. 2006. The intestinal yeasts, p 319–334. In Prillinger H, König H (ed), Intestinal microorganisms of termites and other invertebrates. Springer-Verlag Berlin, Berlin, Germany.

Rajgopal S, Rajyalakshmi Rao D, Varma A. 1979. Association of fungi in termite gut. Curr Sci 48:998–999. https://www.jstor.org/stable/24082324.

Rajgopal S, Rao DR, Varma A. 1981. Fungi of the worker termite-gut, Odontotermes obesus (Rambur) from northern India. Nova Hedwigia 34:97–100.

Rojas-Jiménez K, Hernández M. 2015. Isolation of fungi and bacteria associated with the guts of tropical wood-feeding coleoptera and determination of their lignocellulolytic activities. Int J Microbiol 2015:285018. doi:10.1155/2015/285018. PubMed DOI PMC

Ziganshina EE, Mohammed WS, Shagimardanova EI, Vankov PY, Gogoleva NE, Ziganshin AM. 2018. Fungal, bacterial, and archaeal diversity in the digestive tract of several beetle larvae (Coleoptera). Biomed Res Int 2018:6765438. doi:10.1155/2018/6765438. PubMed DOI PMC

Salehzadeh A, Tavacol P, Mahjub H. 2007. Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan, Iran. J Vector Borne Dis 44:105–110. PubMed

Zhang N, Suh S-O, Blackwell M. 2003. Microorganisms in the gut of beetles: evidence from molecular cloning. J Invertebr Pathol 84:226–233. doi:10.1016/j.jip.2003.10.002. PubMed DOI

Blackwell M. 2017. Yeasts in insects and other invertebrates, p 397–433. In Buzzini P, Lachance M-A, Yurkov A (ed), Yeasts in natural ecosystems: diversity. Springer Cham, Cham, Switzerland.

Stefanini I. 2018. Yeast-insect associations: it takes guts. Yeast 35:315–330. doi:10.1002/yea.3309. PubMed DOI PMC

Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H. 1996. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478. doi:10.1111/j.1365-2672.1996.tb03245.x. PubMed DOI

Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P. 2011. Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634. doi:10.1007/s00248-010-9773-8. PubMed DOI

de França Passos D, Pereira N Jr, de Castro AM. 2018. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr Opin Green Sustain Chem 14:60–66. doi:10.1016/j.cogsc.2018.06.003. DOI

De Beer ZW, Marincowitz S, Duong TA, Kim J-J, Rodrigues A, Wingfield MJ. 2016. Hawksworthiomyces gen. nov.(Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biol 120:1323–1340. doi:10.1016/j.funbio.2016.07.004. PubMed DOI

Eriksson K-EL, Blanchette RA, Ander P. 2012. Microbial and enzymatic degradation of wood and wood components. Springer Science & Business Media, Berlin, Germany.

Félix C, Libório S, Nunes M, Félix R, Duarte AS, Alves A, Esteves AC. 2018. Lasiodiplodia theobromae as a producer of biotechnologically relevant enzymes. Int J Mol Sci 19:29. doi:10.3390/ijms19020029. PubMed DOI PMC

Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K. 2014. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics 15:1096. doi:10.1186/1471-2164-15-1096. PubMed DOI PMC

Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi:10.1146/annurev-arplant-050312-120106. PubMed DOI

Molnar O, Schatzmayr G, Fuchs E, Prillinger H. 2004. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 27:661–671. doi:10.1078/0723202042369947. PubMed DOI

Chakraborty A, Modlinger R, Ashraf MZ, Synek J, Schlyter F, Roy A. 2020. Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol 11:568853. doi:10.3389/fmicb.2020.568853. PubMed DOI PMC

Chakraborty A, Ashraf MZ, Modlinger R, Synek J, Schlyter F, Roy A. 2020. Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci Rep 10:18572. doi:10.1038/s41598-020-75203-5. PubMed DOI PMC

Haverty MI. 1977. The proportion of soldiers in termite colonies: a list and a bibliography. Sociobiology 2:199–216.

Štěpán R, Hajšlová J, Kocourek V, Tichá J. 2004. Uncertainties of gas chromatographic measurement of troublesome pesticide residues in apples employing conventional and mass spectrometric detectors. Anal Chim Acta 520:245–255. doi:10.1016/j.aca.2004.05.045. DOI

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. doi:10.1073/pnas.1000080107. PubMed DOI PMC

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD. 2012. New primers to amplify the fungal ITS2 region: evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. doi:10.1111/j.1574-6941.2012.01437.x. PubMed DOI

Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43. doi:10.3897/mycokeys.10.4852. DOI

Aronesty E. 2011. ea-utils: Command-line tools for processing biological sequencing data. Available from https://github.com/ExpressionAnalysis/ea-utils.

Vetrovský T, Baldrian P, Morais D. 2018. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34:2292–2294. doi:10.1093/bioinformatics/bty071. PubMed DOI PMC

Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F. 2013. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. doi:10.1111/2041-210X.12073. DOI

Edgar R. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604. PubMed DOI

Thomas D, Vandegrift R, Bailes G, Roy B. 2017. Understanding and mitigating some limitations of Illumina MiSeq for environmental sequencing of fungi. bioRxiv. doi:10.1101/184960. DOI

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. doi:10.1093/nar/gkt1244. PubMed DOI PMC

Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM. 2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598. doi:10.1093/nar/gku1201. PubMed DOI PMC

Větrovský T, Baldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923. doi:10.1371/journal.pone.0057923. PubMed DOI PMC

Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. doi:10.1111/mec.12481. PubMed DOI

Magurran AE. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, NJ.

R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Oksanen J. 2011. vegan: Community ecology package. R package version 1.17–9. Available from http://cran.r-project.org/package=vegan.

Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x. DOI

Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P. 2018. vegan: Community ecology package. R package version 2.5–2. https://cran.r-project.org/web/packages/vegan/index.html.

Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. 2014. Change in marine communities: an approach to statistical analysis and interpretation. https://updates.primer-e.com/primer7/manuals/Methods_manual_v7.pdf.

Martinez Arbizu P. 2017. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 00 1. https://github.com/pmartinezarbizu/pairwiseAdonis.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300. doi:10.1111/j.2517-6161.1995.tb02031.x. DOI

Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005. PubMed DOI PMC

Halwachs B, Madhusudhan N, Krause R, Nilsson RH, Moissl-Eichinger C, Högenauer C, Thallinger GG, Gorkiewicz G. 2017. Critical issues in mycobiota analysis. Front Microbiol 8:180. doi:10.3389/fmicb.2017.00180. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...