Strategies for the Design of PEDOT Analogues Unraveled: the Use of Chalcogen Bonds and σ-Holes

. 2023 May 04 ; 127 (17) : 3779-3787. [epub] 20230419

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37075228

In this theoretical study, we set out to demonstrate the substitution effect of PEDOT analogues on planarity as an intrinsic indicator for electronic performance. We perform a quantum mechanical (DFT) study of PEDOT and analogous model systems and demonstrate the usefulness of the ωB97X-V functional to simulate chalcogen bonds and other noncovalent interactions. We confirm that the chalcogen bond stabilizes the planar conformation and further visualize its presence via the electrostatic potential surface. In comparison to the prevalent B3LYP, we gain 4-fold savings in computational time and simulate model systems of up to a dodecamer. Implications for design of conductive polymers can be drawn from the results, and an example for self-doped polymers is presented where modulation of the strength of the chalcogen bond plays a significant role.

Zobrazit více v PubMed

Murray J. S.; Lane P.; Clark T.; Politzer P. σ-Hole Bonding: Molecules Containing Group VI Atoms. J. Mol. Model 2007, 13 (10), 1033–1038. 10.1007/s00894-007-0225-4. PubMed DOI

Wang W.; Ji B.; Zhang Y. Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. J. Phys. Chem. A 2009, 113 (28), 8132–8135. 10.1021/jp904128b. PubMed DOI

Politzer P.; Murray J. S.; Clark T.; Resnati G. The σ-Hole Revisited. Phys. Chem. Chem. Phys. 2017, 19 (48), 32166–32178. 10.1039/C7CP06793C. PubMed DOI

Carugo O.; Resnati G.; Metrangolo P. Chalcogen Bonds Involving Selenium in Protein Structures. ACS Chem. Biol. 2021, 16 (9), 1622–1627. 10.1021/acschembio.1c00441. PubMed DOI PMC

Iwaoka M.; Babe N. Mining and Structural Characterization of S···X Chalcogen Bonds in Protein Database. Phosphorus, Sulfur, and Silicon and the Related Elements 2015, 190 (8), 1257–1264. 10.1080/10426507.2014.1002612. DOI

Kříž K.; Fanfrlík J.; Lepšík M. Chalcogen Bonding in Protein-Ligand Complexes: PDB Survey and Quantum Mechanical Calculations. ChemPhysChem 2018, 19 (19), 2540–2548. 10.1002/cphc.201800409. PubMed DOI

Mitchell M. O. Discovering Protein-ligand Chalcogen Bonding in the Protein Data Bank Using Endocyclic Sulfur-Containing Heterocycles as Ligand Search Subsets. J. Mol. Model 2017, 23 (10), 287.10.1007/s00894-017-3452-3. PubMed DOI

Biswal H. S.; Sahu A. K.; Galmés B.; Frontera A.; Chopra D. Se···O/S and S···O Chalcogen Bonds in Small Molecules and Proteins: A Combined CSD and PDB Study. ChemBioChem 2022, 23 (2), na.10.1002/cbic.202100498. PubMed DOI PMC

Srivastava K.; Chakraborty T.; Singh H. B.; Butcher R. J. Intramolecularly Coordinated Azobenzene Selenium Derivatives: Effect of Strength of the Se···N Intramolecular Interaction on Luminescence. Dalton Trans. 2011, 40 (17), 4489.10.1039/c0dt01319f. PubMed DOI

Kremer A.; Fermi A.; Biot N.; Wouters J.; Bonifazi D. Supramolecular Wiring of Benzo-1,3-Chalcogenazoles through Programmed Chalcogen Bonding Interactions. Chem.—Eur. J. 2016, 22 (16), 5665–5675. 10.1002/chem.201504328. PubMed DOI

Fanfrlík J.; Přáda A.; Padělková Z.; Pecina A.; Macháček J.; Lepšík M.; Holub J.; Růžička A.; Hnyk D.; Hobza P. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angew. Chem., Int. Ed. 2014, 53 (38), 10139–10142. 10.1002/anie.201405901. PubMed DOI

Thomas S. P.; Satheeshkumar K.; Mugesh G.; Guru Row T. N. Unusually Short Chalcogen Bonds Involving Organoselenium: Insights into the Se-N Bond Cleavage Mechanism of the Antioxidant Ebselen and Analogues. Chem.—Eur. J. 2015, 21 (18), 6793–6800. 10.1002/chem.201405998. PubMed DOI

Chen L.; Xiang J.; Zhao Y.; Yan Q. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions. J. Am. Chem. Soc. 2018, 140 (23), 7079–7082. 10.1021/jacs.8b04569. PubMed DOI

Benz S.; López-Andarias J.; Mareda J.; Sakai N.; Matile S. Catalysis with Chalcogen Bonds. Angew. Chem., Int. Ed. 2017, 56 (3), 812–815. 10.1002/anie.201611019. PubMed DOI

Robinson E. R. T.; Walden D. M.; Fallan C.; Greenhalgh M. D.; Cheong P. H.-Y.; Smith A. D. Non-Bonding 1,5-S···O Interactions Govern Chemo- and Enantioselectivity in Isothiourea-Catalyzed Annulations of Benzazoles. Chem. Sci. 2016, 7 (12), 6919–6927. 10.1039/C6SC00940A. PubMed DOI PMC

Whang D. R.; Apaydin D. H.; Park S. Y.; Sariciftci N. S. An Electron-Reservoir Re(I) Complex for Enhanced Efficiency for Reduction of CO2 to CO. J. Catal. 2018, 363, 191–196. 10.1016/j.jcat.2018.04.028. DOI

Sinclair G. S.; Claridge R. C. M.; Kukor A. J.; Hopkins W. S.; Schipper D. J. N -Oxide S-O Chalcogen Bonding in Conjugated Materials. Chem. Sci. 2021, 12 (6), 2304–2312. 10.1039/D0SC06583H. PubMed DOI PMC

Zeng R.; Gong Z.; Yan Q. Chalcogen-Bonding Supramolecular Polymers. J. Org. Chem. 2020, 85 (13), 8397–8404. 10.1021/acs.joc.0c00723. PubMed DOI

Gueye M. N.; Carella A.; Faure-Vincent J.; Demadrille R.; Simonato J.-P. Progress in Understanding Structure and Transport Properties of PEDOT-Based Materials: A Critical Review. Prog. Mater. Sci. 2020, 108, 100616.10.1016/j.pmatsci.2019.100616. DOI

Kaltenbrunner M.; Adam G.; Głowacki E. D.; Drack M.; Schwödiauer R.; Leonat L.; Apaydin D. H.; Groiss H.; Scharber M. C.; White M. S.; Sariciftci N. S.; Bauer S. Flexible High Power-per-Weight Perovskite Solar Cells with Chromium Oxide-Metal Contacts for Improved Stability in Air. Nat. Mater. 2015, 14 (10), 1032–1039. 10.1038/nmat4388. PubMed DOI

White M. S.; Kaltenbrunner M.; Głowacki E. D.; Gutnichenko K.; Kettlgruber G.; Graz I.; Aazou S.; Ulbricht C.; Egbe D. A. M.; Miron M. C.; Major Z.; Scharber M. C.; Sekitani T.; Someya T.; Bauer S.; Sariciftci N. S. Ultrathin, Highly Flexible and Stretchable PLEDs. Nature Photon 2013, 7 (10), 811–816. 10.1038/nphoton.2013.188. DOI

Heydari Gharahcheshmeh M.; Tavakoli M. M.; Gleason E. F.; Robinson M. T.; Kong J.; Gleason K. K. Tuning, Optimization, and Perovskite Solar Cell Device Integration of Ultrathin Poly(3,4-Ethylene Dioxythiophene) Films via a Single-Step All-Dry Process. Sci. Adv. 2019, 5 (11), eaay041410.1126/sciadv.aay0414. PubMed DOI PMC

Simon D. T.; Gabrielsson E. O.; Tybrandt K.; Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116 (21), 13009–13041. 10.1021/acs.chemrev.6b00146. PubMed DOI

Stavrinidou E.; Gabrielsson R.; Gomez E.; Crispin X.; Nilsson O.; Simon D. T.; Berggren M. Electronic Plants. Sci. Adv. 2015, 1 (10), e150113610.1126/sciadv.1501136. PubMed DOI PMC

Coclite A. M.; Howden R. M.; Borrelli D. C.; Petruczok C. D.; Yang R.; Yagüe J. L.; Ugur A.; Chen N.; Lee S.; Jo W. J.; Liu A.; Wang X.; Gleason K. K. 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modifi Cation and Device Fabrication. Adv. Mater. 2013, 25 (38), 5392–5423. 10.1002/adma.201301878. PubMed DOI

Worfolk B. J.; Andrews S. C.; Park S.; Reinspach J.; Liu N.; Toney M. F.; Mannsfeld S. C. B.; Bao Z. Ultrahigh Electrical Conductivity in Solution-Sheared Polymeric Transparent Films. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (46), 14138–14143. 10.1073/pnas.1509958112. PubMed DOI PMC

Cho B.; Park K. S.; Baek J.; Oh H. S.; Koo Lee Y.-E.; Sung M. M. Single-Crystal Poly(3,4-Ethylenedioxythiophene) Nanowires with Ultrahigh Conductivity. Nano Lett. 2014, 14 (6), 3321–3327. 10.1021/nl500748y. PubMed DOI

Gueye M. N.; Carella A.; Massonnet N.; Yvenou E.; Brenet S.; Faure-Vincent J.; Pouget S.; Rieutord F.; Okuno H.; Benayad A.; Demadrille R.; Simonato J.-P. Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement. Chem. Mater. 2016, 28 (10), 3462–3468. 10.1021/acs.chemmater.6b01035. DOI

Farka D.; Coskun H.; Gasiorowski J.; Cobet C.; Hingerl K.; Uiberlacker L. M.; Hild S.; Greunz T.; Stifter D.; Sariciftci N. S.; Menon R.; Schoefberger W.; Mardare C. C.; Hassel A. W.; Schwarzinger C.; Scharber M. C.; Stadler P. Anderson-Localization and the Mott-Ioffe-Regel Limit in Glassy-Metallic PEDOT. AEM 2017, 3 (7), 1700050.10.1002/aelm.201700050. DOI

Roncali J. Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromol. Rapid Commun. 2007, 28 (17), 1761–1775. 10.1002/marc.200700345. DOI

Huang H.; Yang L.; Facchetti A.; Marks T. J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117 (15), 10291–10318. 10.1021/acs.chemrev.7b00084. PubMed DOI

Biot N.; Bonifazi D. Chalcogen-Bond Driven Molecular Recognition at Work. Coord. Chem. Rev. 2020, 413, 213243.10.1016/j.ccr.2020.213243. DOI

Chen S.; Lu B.; Duan X.; Xu J. Systematic Study on Chemical Oxidative and Solid-State Polymerization of Poly(3,4-Ethylenedithiathiophene). J. Polym. Sci. A Polym. Chem. 2012, 50 (10), 1967–1978. 10.1002/pola.25971. DOI

Chen S.; Lu B.; Xu J.; Qin L.; Wang Z.; Duan X. Preparation and Characterization of Aqueous Dispersions of Poly(3,4-Ethylenedithiathiophene- Co −3,4-Ethylenedioxythiophene)/ Poly(Styrene Sulfonate) and Their Conducting Films. J. Appl. Polym. Sci. 2013, 129 (4), 1717–1725. 10.1002/app.38571. DOI

Yano H.; Kudo K.; Marumo K.; Okuzaki H. Fully Soluble Self-Doped Poly(3,4-Ethylenedioxythiophene) with an Electrical Conductivity Greater than 1000 S Cm –1. Sci. Adv. 2019, 5 (4), eaav949210.1126/sciadv.aav9492. PubMed DOI PMC

Farka D.; Greunz T.; Yumusak C.; Cobet C.; Mardare C. C.; Stifter D.; Hassel A. W.; Scharber M. C.; Sariciftci N. S. Overcoming Intra-Molecular Repulsions in PEDTT by Sulphate Counter-Ion. Sci. Technol. Adv. Mater. 2021, 22 (1), 985–997. 10.1080/14686996.2021.1961311. PubMed DOI PMC

Yildirim E.; Wu G.; Yong X.; Tan T. L.; Zhu Q.; Xu J.; Ouyang J.; Wang J.-S.; Yang S.-W. A Theoretical Mechanistic Study on Electrical Conductivity Enhancement of DMSO Treated PEDOT:PSS. J. Mater. Chem. C 2018, 6 (19), 5122–5131. 10.1039/C8TC00917A. DOI

Zozoulenko I.; Singh A.; Singh S. K.; Gueskine V.; Crispin X.; Berggren M. Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT. ACS Appl. Polym. Mater. 2019, 1 (1), 83–94. 10.1021/acsapm.8b00061. DOI

Weigend F.; Sierka M.; Zymon-Sierka A.. Turbomole 7.3, 2018. http://www.turbomole.com.

Hostaš J.; Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

Kříž K.; Nováček M.; Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021, 17 (3), 1548–1561. 10.1021/acs.jctc.0c01341. PubMed DOI

Kříž K.; Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 4: σ-Hole Interactions. Phys. Chem. Chem. Phys. 2022, 24 (24), 14794–14804. 10.1039/D2CP01600A. PubMed DOI

Ghosh S.; Gueskine V.; Berggren M.; Zozoulenko I. V. Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels. J. Phys. Chem. C 2019, 123 (25), 15467–15476. 10.1021/acs.jpcc.9b04634. DOI

Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016, 37 (13), 1230–1237. 10.1002/jcc.24312. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI

Rezac J.Cuby 4, Software Framework for Computational Chemistry. http://cuby4.molecular.cz/. PubMed

Schrödinger, LLC . PyMOL Molecular Graphics System, Version 1.8, 2015.

Riley K. E.; Tran K.-A.; Lane P.; Murray J. S.; Politzer P. Comparative Analysis of Electrostatic Potential Maxima and Minima on Molecular Surfaces, as Determined by Three Methods and a Variety of Basis Sets. Journal of Computational Science 2016, 17, 273–284. 10.1016/j.jocs.2016.03.010. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; https://gaussian.com/.

Sutton C.; Körzdörfer T.; Gray M. T. Accurate Description of Torsion Potentials in Conjugated Polymers Using Density Functionals with Reduced Self-Interaction Error. J. Chem. Phys. 2014, 140, 054310.10.1063/1.4863218. PubMed DOI

Mardirossian N.; Head-Gordon M. ΩB97X-V: A 10-Parameter, Range-Separated Hybrid, Generalized Gradient Approximation Density Functional with Nonlocal Correlation, Designed by a Survival-of-the-Fittest Strategy. Phys. Chem. Chem. Phys. 2014, 16 (21), 9904.10.1039/c3cp54374a. PubMed DOI

Wijsboom Y. H.; Sheynin Y.; Patra A.; Zamoshchik N.; Vardimon R.; Leitus G.; Bendikov M. Tuning of Electronic Properties and Rigidity in PEDOT Analogs. J. Mater. Chem. 2011, 21 (5), 1368–1372. 10.1039/C0JM02679D. DOI

Riwar L.; Trapp N.; Root K.; Zenobi R.; Diederich F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew. Chem., Int. Ed. 2018, 57 (52), 17259–17264. 10.1002/anie.201812095. PubMed DOI

Patra A.; Wijsboom Y. H.; Zade S. S.; Li M.; Sheynin Y.; Leitus G.; Bendikov M. Poly(3,4-Ethylenedioxyselenophene). J. Am. Chem. Soc. 2008, 130 (21), 6734–6736. 10.1021/ja8018675. PubMed DOI

Wang C.; Schindler J. L.; Kannewurf C. R.; Kanatzidis M. G. Poly(3,4-Ethylenedithiathiophene). A New Soluble Conductive Polythiophene Derivative. Chem. Mater. 1995, 7 (1), 58–68. 10.1021/cm00049a011. DOI

Beaumont C.; Turgeon J.; Idir M.; Neusser D.; Lapointe R.; Caron S.; Dupont W.; D’Astous D.; Shamsuddin S.; Hamza S.; Landry E.; Ludwigs S.; Leclerc M. Water-Processable Self-Doped Conducting Polymers via Direct (Hetero)Arylation Polymerization. Macromolecules 2021, 54 (12), 5464–5472. 10.1021/acs.macromol.1c00847. DOI

Heydari Gharahcheshmeh M.; Robinson M. T.; Gleason E. F.; Gleason K. K. Optimizing the Optoelectronic Properties of Face-On Oriented Poly(3,4-Ethylenedioxythiophene) via Water-Assisted Oxidative Chemical Vapor Deposition. Adv. Funct. Mater. 2021, 31 (14), 2008712.10.1002/adfm.202008712. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace