Strategies for the Design of PEDOT Analogues Unraveled: the Use of Chalcogen Bonds and σ-Holes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37075228
PubMed Central
PMC10165655
DOI
10.1021/acs.jpca.2c08965
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this theoretical study, we set out to demonstrate the substitution effect of PEDOT analogues on planarity as an intrinsic indicator for electronic performance. We perform a quantum mechanical (DFT) study of PEDOT and analogous model systems and demonstrate the usefulness of the ωB97X-V functional to simulate chalcogen bonds and other noncovalent interactions. We confirm that the chalcogen bond stabilizes the planar conformation and further visualize its presence via the electrostatic potential surface. In comparison to the prevalent B3LYP, we gain 4-fold savings in computational time and simulate model systems of up to a dodecamer. Implications for design of conductive polymers can be drawn from the results, and an example for self-doped polymers is presented where modulation of the strength of the chalcogen bond plays a significant role.
Zobrazit více v PubMed
Murray J. S.; Lane P.; Clark T.; Politzer P. σ-Hole Bonding: Molecules Containing Group VI Atoms. J. Mol. Model 2007, 13 (10), 1033–1038. 10.1007/s00894-007-0225-4. PubMed DOI
Wang W.; Ji B.; Zhang Y. Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. J. Phys. Chem. A 2009, 113 (28), 8132–8135. 10.1021/jp904128b. PubMed DOI
Politzer P.; Murray J. S.; Clark T.; Resnati G. The σ-Hole Revisited. Phys. Chem. Chem. Phys. 2017, 19 (48), 32166–32178. 10.1039/C7CP06793C. PubMed DOI
Carugo O.; Resnati G.; Metrangolo P. Chalcogen Bonds Involving Selenium in Protein Structures. ACS Chem. Biol. 2021, 16 (9), 1622–1627. 10.1021/acschembio.1c00441. PubMed DOI PMC
Iwaoka M.; Babe N. Mining and Structural Characterization of S···X Chalcogen Bonds in Protein Database. Phosphorus, Sulfur, and Silicon and the Related Elements 2015, 190 (8), 1257–1264. 10.1080/10426507.2014.1002612. DOI
Kříž K.; Fanfrlík J.; Lepšík M. Chalcogen Bonding in Protein-Ligand Complexes: PDB Survey and Quantum Mechanical Calculations. ChemPhysChem 2018, 19 (19), 2540–2548. 10.1002/cphc.201800409. PubMed DOI
Mitchell M. O. Discovering Protein-ligand Chalcogen Bonding in the Protein Data Bank Using Endocyclic Sulfur-Containing Heterocycles as Ligand Search Subsets. J. Mol. Model 2017, 23 (10), 287.10.1007/s00894-017-3452-3. PubMed DOI
Biswal H. S.; Sahu A. K.; Galmés B.; Frontera A.; Chopra D. Se···O/S and S···O Chalcogen Bonds in Small Molecules and Proteins: A Combined CSD and PDB Study. ChemBioChem 2022, 23 (2), na.10.1002/cbic.202100498. PubMed DOI PMC
Srivastava K.; Chakraborty T.; Singh H. B.; Butcher R. J. Intramolecularly Coordinated Azobenzene Selenium Derivatives: Effect of Strength of the Se···N Intramolecular Interaction on Luminescence. Dalton Trans. 2011, 40 (17), 4489.10.1039/c0dt01319f. PubMed DOI
Kremer A.; Fermi A.; Biot N.; Wouters J.; Bonifazi D. Supramolecular Wiring of Benzo-1,3-Chalcogenazoles through Programmed Chalcogen Bonding Interactions. Chem.—Eur. J. 2016, 22 (16), 5665–5675. 10.1002/chem.201504328. PubMed DOI
Fanfrlík J.; Přáda A.; Padělková Z.; Pecina A.; Macháček J.; Lepšík M.; Holub J.; Růžička A.; Hnyk D.; Hobza P. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angew. Chem., Int. Ed. 2014, 53 (38), 10139–10142. 10.1002/anie.201405901. PubMed DOI
Thomas S. P.; Satheeshkumar K.; Mugesh G.; Guru Row T. N. Unusually Short Chalcogen Bonds Involving Organoselenium: Insights into the Se-N Bond Cleavage Mechanism of the Antioxidant Ebselen and Analogues. Chem.—Eur. J. 2015, 21 (18), 6793–6800. 10.1002/chem.201405998. PubMed DOI
Chen L.; Xiang J.; Zhao Y.; Yan Q. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions. J. Am. Chem. Soc. 2018, 140 (23), 7079–7082. 10.1021/jacs.8b04569. PubMed DOI
Benz S.; López-Andarias J.; Mareda J.; Sakai N.; Matile S. Catalysis with Chalcogen Bonds. Angew. Chem., Int. Ed. 2017, 56 (3), 812–815. 10.1002/anie.201611019. PubMed DOI
Robinson E. R. T.; Walden D. M.; Fallan C.; Greenhalgh M. D.; Cheong P. H.-Y.; Smith A. D. Non-Bonding 1,5-S···O Interactions Govern Chemo- and Enantioselectivity in Isothiourea-Catalyzed Annulations of Benzazoles. Chem. Sci. 2016, 7 (12), 6919–6927. 10.1039/C6SC00940A. PubMed DOI PMC
Whang D. R.; Apaydin D. H.; Park S. Y.; Sariciftci N. S. An Electron-Reservoir Re(I) Complex for Enhanced Efficiency for Reduction of CO2 to CO. J. Catal. 2018, 363, 191–196. 10.1016/j.jcat.2018.04.028. DOI
Sinclair G. S.; Claridge R. C. M.; Kukor A. J.; Hopkins W. S.; Schipper D. J. N -Oxide S-O Chalcogen Bonding in Conjugated Materials. Chem. Sci. 2021, 12 (6), 2304–2312. 10.1039/D0SC06583H. PubMed DOI PMC
Zeng R.; Gong Z.; Yan Q. Chalcogen-Bonding Supramolecular Polymers. J. Org. Chem. 2020, 85 (13), 8397–8404. 10.1021/acs.joc.0c00723. PubMed DOI
Gueye M. N.; Carella A.; Faure-Vincent J.; Demadrille R.; Simonato J.-P. Progress in Understanding Structure and Transport Properties of PEDOT-Based Materials: A Critical Review. Prog. Mater. Sci. 2020, 108, 100616.10.1016/j.pmatsci.2019.100616. DOI
Kaltenbrunner M.; Adam G.; Głowacki E. D.; Drack M.; Schwödiauer R.; Leonat L.; Apaydin D. H.; Groiss H.; Scharber M. C.; White M. S.; Sariciftci N. S.; Bauer S. Flexible High Power-per-Weight Perovskite Solar Cells with Chromium Oxide-Metal Contacts for Improved Stability in Air. Nat. Mater. 2015, 14 (10), 1032–1039. 10.1038/nmat4388. PubMed DOI
White M. S.; Kaltenbrunner M.; Głowacki E. D.; Gutnichenko K.; Kettlgruber G.; Graz I.; Aazou S.; Ulbricht C.; Egbe D. A. M.; Miron M. C.; Major Z.; Scharber M. C.; Sekitani T.; Someya T.; Bauer S.; Sariciftci N. S. Ultrathin, Highly Flexible and Stretchable PLEDs. Nature Photon 2013, 7 (10), 811–816. 10.1038/nphoton.2013.188. DOI
Heydari Gharahcheshmeh M.; Tavakoli M. M.; Gleason E. F.; Robinson M. T.; Kong J.; Gleason K. K. Tuning, Optimization, and Perovskite Solar Cell Device Integration of Ultrathin Poly(3,4-Ethylene Dioxythiophene) Films via a Single-Step All-Dry Process. Sci. Adv. 2019, 5 (11), eaay041410.1126/sciadv.aay0414. PubMed DOI PMC
Simon D. T.; Gabrielsson E. O.; Tybrandt K.; Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116 (21), 13009–13041. 10.1021/acs.chemrev.6b00146. PubMed DOI
Stavrinidou E.; Gabrielsson R.; Gomez E.; Crispin X.; Nilsson O.; Simon D. T.; Berggren M. Electronic Plants. Sci. Adv. 2015, 1 (10), e150113610.1126/sciadv.1501136. PubMed DOI PMC
Coclite A. M.; Howden R. M.; Borrelli D. C.; Petruczok C. D.; Yang R.; Yagüe J. L.; Ugur A.; Chen N.; Lee S.; Jo W. J.; Liu A.; Wang X.; Gleason K. K. 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modifi Cation and Device Fabrication. Adv. Mater. 2013, 25 (38), 5392–5423. 10.1002/adma.201301878. PubMed DOI
Worfolk B. J.; Andrews S. C.; Park S.; Reinspach J.; Liu N.; Toney M. F.; Mannsfeld S. C. B.; Bao Z. Ultrahigh Electrical Conductivity in Solution-Sheared Polymeric Transparent Films. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (46), 14138–14143. 10.1073/pnas.1509958112. PubMed DOI PMC
Cho B.; Park K. S.; Baek J.; Oh H. S.; Koo Lee Y.-E.; Sung M. M. Single-Crystal Poly(3,4-Ethylenedioxythiophene) Nanowires with Ultrahigh Conductivity. Nano Lett. 2014, 14 (6), 3321–3327. 10.1021/nl500748y. PubMed DOI
Gueye M. N.; Carella A.; Massonnet N.; Yvenou E.; Brenet S.; Faure-Vincent J.; Pouget S.; Rieutord F.; Okuno H.; Benayad A.; Demadrille R.; Simonato J.-P. Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement. Chem. Mater. 2016, 28 (10), 3462–3468. 10.1021/acs.chemmater.6b01035. DOI
Farka D.; Coskun H.; Gasiorowski J.; Cobet C.; Hingerl K.; Uiberlacker L. M.; Hild S.; Greunz T.; Stifter D.; Sariciftci N. S.; Menon R.; Schoefberger W.; Mardare C. C.; Hassel A. W.; Schwarzinger C.; Scharber M. C.; Stadler P. Anderson-Localization and the Mott-Ioffe-Regel Limit in Glassy-Metallic PEDOT. AEM 2017, 3 (7), 1700050.10.1002/aelm.201700050. DOI
Roncali J. Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromol. Rapid Commun. 2007, 28 (17), 1761–1775. 10.1002/marc.200700345. DOI
Huang H.; Yang L.; Facchetti A.; Marks T. J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117 (15), 10291–10318. 10.1021/acs.chemrev.7b00084. PubMed DOI
Biot N.; Bonifazi D. Chalcogen-Bond Driven Molecular Recognition at Work. Coord. Chem. Rev. 2020, 413, 213243.10.1016/j.ccr.2020.213243. DOI
Chen S.; Lu B.; Duan X.; Xu J. Systematic Study on Chemical Oxidative and Solid-State Polymerization of Poly(3,4-Ethylenedithiathiophene). J. Polym. Sci. A Polym. Chem. 2012, 50 (10), 1967–1978. 10.1002/pola.25971. DOI
Chen S.; Lu B.; Xu J.; Qin L.; Wang Z.; Duan X. Preparation and Characterization of Aqueous Dispersions of Poly(3,4-Ethylenedithiathiophene- Co −3,4-Ethylenedioxythiophene)/ Poly(Styrene Sulfonate) and Their Conducting Films. J. Appl. Polym. Sci. 2013, 129 (4), 1717–1725. 10.1002/app.38571. DOI
Yano H.; Kudo K.; Marumo K.; Okuzaki H. Fully Soluble Self-Doped Poly(3,4-Ethylenedioxythiophene) with an Electrical Conductivity Greater than 1000 S Cm –1. Sci. Adv. 2019, 5 (4), eaav949210.1126/sciadv.aav9492. PubMed DOI PMC
Farka D.; Greunz T.; Yumusak C.; Cobet C.; Mardare C. C.; Stifter D.; Hassel A. W.; Scharber M. C.; Sariciftci N. S. Overcoming Intra-Molecular Repulsions in PEDTT by Sulphate Counter-Ion. Sci. Technol. Adv. Mater. 2021, 22 (1), 985–997. 10.1080/14686996.2021.1961311. PubMed DOI PMC
Yildirim E.; Wu G.; Yong X.; Tan T. L.; Zhu Q.; Xu J.; Ouyang J.; Wang J.-S.; Yang S.-W. A Theoretical Mechanistic Study on Electrical Conductivity Enhancement of DMSO Treated PEDOT:PSS. J. Mater. Chem. C 2018, 6 (19), 5122–5131. 10.1039/C8TC00917A. DOI
Zozoulenko I.; Singh A.; Singh S. K.; Gueskine V.; Crispin X.; Berggren M. Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT. ACS Appl. Polym. Mater. 2019, 1 (1), 83–94. 10.1021/acsapm.8b00061. DOI
Weigend F.; Sierka M.; Zymon-Sierka A.. Turbomole 7.3, 2018. http://www.turbomole.com.
Hostaš J.; Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
Kříž K.; Nováček M.; Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021, 17 (3), 1548–1561. 10.1021/acs.jctc.0c01341. PubMed DOI
Kříž K.; Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 4: σ-Hole Interactions. Phys. Chem. Chem. Phys. 2022, 24 (24), 14794–14804. 10.1039/D2CP01600A. PubMed DOI
Ghosh S.; Gueskine V.; Berggren M.; Zozoulenko I. V. Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels. J. Phys. Chem. C 2019, 123 (25), 15467–15476. 10.1021/acs.jpcc.9b04634. DOI
Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016, 37 (13), 1230–1237. 10.1002/jcc.24312. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI
Rezac J.Cuby 4, Software Framework for Computational Chemistry. http://cuby4.molecular.cz/. PubMed
Schrödinger, LLC . PyMOL Molecular Graphics System, Version 1.8, 2015.
Riley K. E.; Tran K.-A.; Lane P.; Murray J. S.; Politzer P. Comparative Analysis of Electrostatic Potential Maxima and Minima on Molecular Surfaces, as Determined by Three Methods and a Variety of Basis Sets. Journal of Computational Science 2016, 17, 273–284. 10.1016/j.jocs.2016.03.010. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; https://gaussian.com/.
Sutton C.; Körzdörfer T.; Gray M. T. Accurate Description of Torsion Potentials in Conjugated Polymers Using Density Functionals with Reduced Self-Interaction Error. J. Chem. Phys. 2014, 140, 054310.10.1063/1.4863218. PubMed DOI
Mardirossian N.; Head-Gordon M. ΩB97X-V: A 10-Parameter, Range-Separated Hybrid, Generalized Gradient Approximation Density Functional with Nonlocal Correlation, Designed by a Survival-of-the-Fittest Strategy. Phys. Chem. Chem. Phys. 2014, 16 (21), 9904.10.1039/c3cp54374a. PubMed DOI
Wijsboom Y. H.; Sheynin Y.; Patra A.; Zamoshchik N.; Vardimon R.; Leitus G.; Bendikov M. Tuning of Electronic Properties and Rigidity in PEDOT Analogs. J. Mater. Chem. 2011, 21 (5), 1368–1372. 10.1039/C0JM02679D. DOI
Riwar L.; Trapp N.; Root K.; Zenobi R.; Diederich F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew. Chem., Int. Ed. 2018, 57 (52), 17259–17264. 10.1002/anie.201812095. PubMed DOI
Patra A.; Wijsboom Y. H.; Zade S. S.; Li M.; Sheynin Y.; Leitus G.; Bendikov M. Poly(3,4-Ethylenedioxyselenophene). J. Am. Chem. Soc. 2008, 130 (21), 6734–6736. 10.1021/ja8018675. PubMed DOI
Wang C.; Schindler J. L.; Kannewurf C. R.; Kanatzidis M. G. Poly(3,4-Ethylenedithiathiophene). A New Soluble Conductive Polythiophene Derivative. Chem. Mater. 1995, 7 (1), 58–68. 10.1021/cm00049a011. DOI
Beaumont C.; Turgeon J.; Idir M.; Neusser D.; Lapointe R.; Caron S.; Dupont W.; D’Astous D.; Shamsuddin S.; Hamza S.; Landry E.; Ludwigs S.; Leclerc M. Water-Processable Self-Doped Conducting Polymers via Direct (Hetero)Arylation Polymerization. Macromolecules 2021, 54 (12), 5464–5472. 10.1021/acs.macromol.1c00847. DOI
Heydari Gharahcheshmeh M.; Robinson M. T.; Gleason E. F.; Gleason K. K. Optimizing the Optoelectronic Properties of Face-On Oriented Poly(3,4-Ethylenedioxythiophene) via Water-Assisted Oxidative Chemical Vapor Deposition. Adv. Funct. Mater. 2021, 31 (14), 2008712.10.1002/adfm.202008712. DOI