Basal Ganglia Compensatory White Matter Changes on DTI in Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37174620
PubMed Central
PMC10177535
DOI
10.3390/cells12091220
PII: cells12091220
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, DTI, basal ganglia, compensatory changes, white matter,
- MeSH
- Alzheimerova nemoc * diagnostické zobrazování MeSH
- bílá hmota * diagnostické zobrazování MeSH
- lidé MeSH
- putamen diagnostické zobrazování MeSH
- šedá hmota diagnostické zobrazování MeSH
- zobrazování difuzních tenzorů metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The volume reduction of the gray matter structures in patients with Alzheimer's disease is often accompanied by an asymmetric increase in the number of white matter fibers located close to these structures. The present study aims to investigate the white matter structure changes in the motor basal ganglia in Alzheimer's disease patients compared to healthy controls using diffusion tensor imaging. The amounts of tracts, tract length, tract volume, quantitative anisotropy, and general fractional anisotropy were measured in ten patients with Alzheimer's disease and ten healthy controls. A significant decrease in the number of tracts and general fractional anisotropy was found in patients with Alzheimer's disease compared to controls in the right caudate nucleus, while an increase was found in the left and the right putamen. Further, a significant decrease in the structural volume of the left and the right putamen was observed. An increase in the white matter diffusion tensor imaging parameters in patients with Alzheimer's disease was observed only in the putamen bilaterally. The right caudate showed a decrease in both the diffusion tensor imaging parameters and the volume in Alzheimer's disease patients. The right pallidum showed an increase in the diffusion tensor imaging parameters but a decrease in volume in Alzheimer's disease patients.
Zobrazit více v PubMed
Cho H., Kim J.H., Kim C., Ye B.S., Kim H.J., Yoon C.W., Noh Y., Kim G.H., Kim Y.J., Kim C.H., et al. Shape changes of the basal ganglia and thalamus in Alzheimer’s disease: A three-year longitudinal study. J. Alzheimer’s Dis. 2014;40:285–925. doi: 10.3233/JAD-132072. PubMed DOI
Ding B., Ling H.W., Zhang Y., Huang J., Zhang H., Wang T., Yan F.H. Pattern of cerebral hyperperfusion in Alzheimer’s disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: Initial experience. Clin. Interv. Aging. 2014;9:493–500. doi: 10.2147/CIA.S58879. PubMed DOI PMC
Wright S., Kochunov P., Chiappelli J., McMahon R., Muellerklein F., Wijtenburg S.A., White M.G., Rowland L.M., Hong L.E. Accelerated white matter aging in schizophrenia: Role of white matter blood perfusion. Neurobiol. Aging. 2014;35:2411–2418. doi: 10.1016/j.neurobiolaging.2014.02.016. PubMed DOI PMC
Wen W., Sachdev P., Shnier R., Brodaty H. Effect of white matter hyperintensities on cortical cerebral blood volume using perfusion MRI. Neuroimage. 2004;21:1350–1356. doi: 10.1016/j.neuroimage.2003.11.015. PubMed DOI
Kim S.M., Kim M.J., Rhee H.Y., Ryu C.W., Kim E.J., Petersen E.T., Jahng G.H. Regional cerebral perfusion in patients with Alzheimer’s disease and mild cognitive impairment: Effect of APOE epsilon4 allele. Neuroradiology. 2013;55:25–34. doi: 10.1007/s00234-012-1077-x. PubMed DOI
Andica C., Kamagata K., Hatano T., Saito Y., Ogaki K., Hattori N., Aoki S. MR biomarkers of degenerative brain disorders derived from diffusion imaging. J. Magn. Reson. Imaging. 2020;52:1620–1636. doi: 10.1002/jmri.27019. PubMed DOI PMC
Kuchtova B., Wurst Z., Mrzilkova J., Ibrahim I., Tintera J., Bartos A., Musil V., Kieslich K., Zach P. Compensatory Shift of Subcallosal Area and Paraterminal Gyrus White Matter Parameters on DTI in Patients with Alzheimer Disease. Curr. Alzheimer Res. 2018;15:590–599. doi: 10.2174/1567205015666171227155510. PubMed DOI
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008. PubMed DOI PMC
Grothe M.J., Barthel H., Sepulcre J., Dyrba M., Sabri O., Teipel S.J. In vivo staging of regional amyloid deposition. Neurology. 2017;89:2031–2038. doi: 10.1212/WNL.0000000000004643. PubMed DOI PMC
Bartos A., Raisova M. The Mini-Mental State Examination: Czech Norms and Cutoffs for Mild Dementia and Mild Cognitive Impairment due to Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2016;42:50–57. doi: 10.1159/000446426. PubMed DOI
Andersson J.L.R., Sotiropoulos S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078. doi: 10.1016/j.neuroimage.2015.10.019. PubMed DOI PMC
Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–841. doi: 10.1006/nimg.2002.1132. PubMed DOI
Yeh F.C., Tseng W.Y. NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage. 2011;58:91–99. doi: 10.1016/j.neuroimage.2011.06.021. PubMed DOI
Fischl B., Salat D.H., Busa E., Albert M., Dieterich M., Haselgrove C., van der Kouwe A., Killiany R., Kennedy D., Klaveness S., et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–355. doi: 10.1016/S0896-6273(02)00569-X. PubMed DOI
RC Team A Language and Environment for Statistical Computing. [(accessed on 6 March 2023)]. Available online: https://www.R-project.org/
Fisher R.A. Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. Biometrika. 1915;10:507–521. doi: 10.2307/2331838. DOI
Jones D.K., Cercignani M. Twenty-five Pitfalls in the Analysis of Diffusion MRI Data. NMR Biomed. 2010;23:803–820. doi: 10.1002/nbm.1543. PubMed DOI
Borkowski K., Klodowski K., Figiel H., Krzyzak A.T. A theoretical validation of the B-matrix spatial distribution approach to diffusion tensor imaging. Magn. Reson. Imaging. 2017;36:1–6. doi: 10.1016/j.mri.2016.10.002. PubMed DOI
Borkowski K., Krzyżak A.T. Analysis and correction of errors in DTI-based tractography due to diffusion gradient inhomogeneity. J. Magn. Reson. 2018;296:5–11. doi: 10.1016/j.jmr.2018.08.011. PubMed DOI
Yeh F.C., Verstynen T.D., Wang Y., Fernandez-Miranda J.C., Tseng W.Y. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE. 2013;8:e80713. doi: 10.1371/journal.pone.0080713. PubMed DOI PMC
Zhang H., Wang Y., Lu T., Qiu B., Tang Y., Ou S., Tie X., Sun C., Xu K. Differences between generalized q-sampling imaging and diffusion tensor imaging in the preoperative visualization of the nerve fiber tracts within peritumoral edema in brain. Neurosurgery. 2013;73:1044–1053. doi: 10.1227/NEU.0000000000000146. PubMed DOI
Tucholka A., Grau-Rivera O., Falcon C., Rami L., Sanchez-Valle R., Llado A., Gispert J.D., Molinuevo J.L. Structural Connectivity Alterations Along the Alzheimer’s Disease Continuum: Reproducibility Across Two Independent Samples and Correlation with Cerebrospinal Fluid Amyloid-beta and Tau. J. Alzheimer’s Dis. 2018;61:1575–1587. doi: 10.3233/JAD-170553. PubMed DOI PMC
DeLong M.R., Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 2007;64:20–24. doi: 10.1001/archneur.64.1.20. PubMed DOI
Grillner S., Robertson B. The Basal Ganglia Over 500 Million Years. Curr. Biol. 2016;26:R1088–R1100. doi: 10.1016/j.cub.2016.06.041. PubMed DOI
Pasquini J., Durcan R., Wiblin L., Gersel Stokholm M., Rochester L., Brooks D.J., Burn D., Pavese N. Clinical implications of early caudate dysfunction in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2019;90:1098–1104. doi: 10.1136/jnnp-2018-320157. PubMed DOI PMC
Sanjari Moghaddam H., Dolatshahi M., Mohebi F., Aarabi M.H. Structural white matter alterations as compensatory mechanisms in Parkinson’s disease: A systematic review of diffusion tensor imaging studies. J. Neurosci. Res. 2020;98:1398–1416. doi: 10.1002/jnr.24617. PubMed DOI
Jackson S.R., Parkinson A., Jung J., Ryan S.E., Morgan P.S., Hollis C., Jackson G.M. Compensatory neural reorganization in Tourette syndrome. Curr. Biol. 2011;21:580–585. doi: 10.1016/j.cub.2011.02.047. PubMed DOI PMC
Ji E., Guevara P., Guevara M., Grigis A., Labra N., Sarrazin S., Hamdani N., Bellivier F., Delavest M., Leboyer M., et al. Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder. Schizophr. Bull. 2019;45:1367–1378. doi: 10.1093/schbul/sbz015. PubMed DOI PMC
Xekardaki A., Giannakopoulos P., Haller S. White Matter Changes in Bipolar Disorder, Alzheimer Disease, and Mild Cognitive Impairment: New Insights from DTI. J. Aging Res. 2011;2011:286564. doi: 10.4061/2011/286564. PubMed DOI PMC
Wright N., Alhindi A., Millikin C., Modirrousta M., Udow S., Borys A., Anang J., Hobson D.E., Ko J.H. Elevated caudate connectivity in cognitively normal Parkinson’s disease patients. Sci. Rep. 2020;10:17978. doi: 10.1038/s41598-020-75008-6. PubMed DOI PMC
Deeb W., Salvato B., Almeida L., Foote K.D., Amaral R., Germann J., Rosenberg P.B., Tang-Wai D.F., Wolk D.A., Burke A.D., et al. Fornix-Region Deep Brain Stimulation-Induced Memory Flashbacks in Alzheimer’s Disease. N. Engl. J. Med. 2019;381:783–785. doi: 10.1056/NEJMc1905240. PubMed DOI PMC
Kilimann I., Grothe M., Heinsen H., Alho E.J., Grinberg L., Amaro E., Jr., Dos Santos G.A., da Silva R.E., Mitchell A.J., Frisoni G.B., et al. Subregional basal forebrain atrophy in Alzheimer’s disease: A multicenter study. J. Alzheimer’s Dis. 2014;40:687–700. doi: 10.3233/JAD-132345. PubMed DOI PMC