Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu metaanalýza, časopisecké články
Grantová podpora
P30 CA015083
NCI NIH HHS - United States
P50 CA097274
NCI NIH HHS - United States
R01 CA092153
NCI NIH HHS - United States
PubMed
37175717
PubMed Central
PMC10178669
DOI
10.3390/ijms24098005
PII: ijms24098005
Knihovny.cz E-zdroje
- Klíčová slova
- TTFT, chronic lymphocytic leukemia, genetic variants, overall survival, polygenic risk score, susceptibility,
- MeSH
- celogenomová asociační studie MeSH
- chronická lymfatická leukemie * genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- progrese nemoci MeSH
- rizikové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults worldwide. Although genome-wide association studies (GWAS) have uncovered the germline genetic component underlying CLL susceptibility, the potential use of GWAS-identified risk variants to predict disease progression and patient survival remains unexplored. Here, we evaluated whether 41 GWAS-identified risk variants for CLL could influence overall survival (OS) and disease progression, defined as time to first treatment (TTFT) in a cohort of 1039 CLL cases ascertained through the CRuCIAL consortium. Although this is the largest study assessing the effect of GWAS-identified susceptibility variants for CLL on OS, we only found a weak association of ten single nucleotide polymorphisms (SNPs) with OS (p < 0.05) that did not remain significant after correction for multiple testing. In line with these results, polygenic risk scores (PRSs) built with these SNPs in the CRuCIAL cohort showed a modest association with OS and a low capacity to predict patient survival, with an area under the receiver operating characteristic curve (AUROC) of 0.57. Similarly, seven SNPs were associated with TTFT (p < 0.05); however, these did not reach the multiple testing significance threshold, and the meta-analysis with previous published data did not confirm any of the associations. As expected, PRSs built with these SNPs showed reduced accuracy in prediction of disease progression (AUROC = 0.62). These results suggest that susceptibility variants for CLL do not impact overall survival and disease progression in CLL patients.
Catalan Institute of Oncology Bellvitge Biomedical Research Institute 08908 Barcelona Spain
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences 1090 Vienna Austria
Centre for Individualised Infection Medicine 30625 Hannover Germany
CIBER Epidemiología y Salud Pública 28029 Madrid Spain
Department of Biology University of Pisa 56126 Pisa Italy
Department of Cancer Prevention and Therapy Medical University of Wrocław 50 556 Wrocław Poland
Department of Clinical Sciences Faculty of Medicine University of Barcelona 08907 Barcelona Spain
Department of Hematology University Hospital of Salamanca 37007 Salamanca Spain
Department of Leukemia The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
Department of Nursing Universitat de Girona 17007 Girona Spain
Department of Quantitative Health Sciences Mayo Clinic Rochester MN 55905 USA
Division of Computational Genomics Mayo Clinic Rochester MN 85054 USA
Division of Hematology Mayo Clinic Rochester MN 55905 USA
Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany
Faculty of Medicine University of Cantabria 39011 Santander Spain
Genomic Epidemiology Group German Cancer Research Center 69120 Heidelberg Germany
Hematology Department Morales Meseguer University Hospital 30008 Murcia Spain
Hopp Children's Cancer Center 69120 Heidelberg Germany
Hospital Campus de la Salud PTS 18016 Granada Spain
Immunology Department Virgen de las Nieves University Hospital 18014 Granada Spain
Instituto de Investigación Biosanitaria IBs Granada 18012 Granada Spain
Josep Carreras Leukemia Research Institute 08916 Girona Spain
Molecular Cytogenetics Laboratory Pathology Department Hospital del Mar 08003 Barcelona Spain
Zobrazit více v PubMed
Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminici M., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–1748. doi: 10.1038/s41375-022-01620-2. PubMed DOI PMC
Yao Y., Lin X., Li F., Jin J., Wang H. The global burden and attributable risk factors of chronic lymphocytic leukemia in 204 countries and territories from 1990 to 2019: Analysis based on the global burden of disease study 2019. Biomed. Eng. Online. 2022;21:4. doi: 10.1186/s12938-021-00973-6. PubMed DOI PMC
Parikh S.A., Rabe K.G., Kay N.E., Call T.G., Ding W., Schwager S.M., Bowen D.A., Conte M., Jelinek D.F., Slager S.L., et al. Chronic lymphocytic leukemia in young (≤55 years) patients: A comprehensive analysis of prognostic factors and outcomes. Haematologica. 2014;99:140–147. doi: 10.3324/haematol.2013.086066. PubMed DOI PMC
Alrawashdh N., Sweasy J., Erstad B., McBride A., Persky D.O., Abraham I. Survival trends in chronic lymphocytic leukemia across treatment eras: US SEER database analysis (1985–2017) Ann. Hematol. 2021;100:2501–2512. doi: 10.1007/s00277-021-04600-1. PubMed DOI
Hallek M., Al-Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am. J. Hematol. 2021;96:1679–1705. doi: 10.1002/ajh.26367. PubMed DOI
Rossi D., Rasi S., Spina V., Bruscaggin A., Monti S., Ciardullo C., Deambrogi C., Khiabanian H., Serra R., Bertoni F., et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121:1403–1412. doi: 10.1182/blood-2012-09-458265. PubMed DOI PMC
Berndt S.I., Camp N.J., Skibola C.F., Vijai J., Wang Z., Gu J., Nieters A., Kelly R.S., Smedby K.E., Monnereau A., et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat. Commun. 2016;7:10933. doi: 10.1038/ncomms10933. PubMed DOI PMC
Law P.J., Berndt S.I., Speedy H.E., Camp N.J., Sava G.P., Skibola C.F., Holroyd A., Joseph V., Sunter N.J., Nieters A., et al. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nat. Commun. 2017;8:14175. doi: 10.1038/ncomms14175. PubMed DOI PMC
Slager S.L., Rabe K.G., Achenbach S.J., Vachon C.M., Goldin L.R., Strom S.S., Lanasa M.C., Spector L.G., Rassenti L.Z., Leis J.F., et al. Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood. 2011;117:1911–1916. doi: 10.1182/blood-2010-09-308205. PubMed DOI PMC
Di Bernardo M.C., Crowther-Swanepoel D., Broderick P., Webb E., Sellick G., Wild R., Sullivan K., Vijayakrishnan J., Wang Y., Pittman A.M., et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 2008;40:1204–1210. doi: 10.1038/ng.219. PubMed DOI
Call T.G., Phyliky R.L., Noel P., Habermann T.M., Beard C.M., O’Fallon W.M., Kurland L.T. Incidence of chronic lymphocytic leukemia in Olmsted County, Minnesota, 1935 through 1989, with emphasis on changes in initial stage at diagnosis. Mayo Clin. Proc. 1994;69:323–328. doi: 10.1016/S0025-6196(12)62215-0. PubMed DOI
Lin W.Y., Fordham S.E., Sunter N., Elstob C., Rahman T., Willmore E., Shepherd C., Strathdee G., Mainou-Fowler T., Piddock R., et al. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat. Commun. 2021;12:665. doi: 10.1038/s41467-020-20822-9. PubMed DOI PMC
Macauda A., Clay-Gilmour A., Hielscher T., Hildebrandt M.A.T., Kruszewski M., Orlowski R.Z., Kumar S.K., Ziv E., Orciuolo E., Brown E.E., et al. Does a Multiple Myeloma Polygenic Risk Score Predict Overall Survival of Patients with Myeloma? Cancer Epidemiol. Biomark. Prev. 2022;31:1863–1866. doi: 10.1158/1055-9965.EPI-22-0043. PubMed DOI PMC
Garcia-Martin P., Diez A.M., Maldonado J.M.S., Serrano A.J.C., Ter Horst R., Benavente Y., Landi S., Macauda A., Clay-Gilmour A., Hernandez-Mohedo F., et al. Validation and functional characterization of GWAS-identified variants for chronic lymphocytic leukemia: A CRuCIAL study. Blood Cancer J. 2022;12:79. doi: 10.1038/s41408-022-00676-8. PubMed DOI PMC
Wu M., Fan B., Guo Q., Li Y., Chen R., Lv N., Diao Y., Luo Y. Knockdown of SETDB1 inhibits breast cancer progression by miR-381-3p-related regulation. Biol. Res. 2018;51:39. doi: 10.1186/s40659-018-0189-0. PubMed DOI PMC
Canzian F., Piredda C., Macauda A., Zawirska D., Andersen N.F., Nagler A., Zaucha J.M., Mazur G., Dumontet C., Watek M., et al. A polygenic risk score for multiple myeloma risk prediction. Eur. J. Hum. Genet. 2022;30:474–479. doi: 10.1038/s41431-021-00986-8. PubMed DOI PMC
Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F.M., et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016;167:1099–1110.e14. doi: 10.1016/j.cell.2016.10.017. PubMed DOI
Orru V., Steri M., Sole G., Sidore C., Virdis F., Dei M., Lai S., Zoledziewska M., Busonero F., Mulas A., et al. Genetic variants regulating immune cell levels in health and disease. Cell. 2013;155:242–256. doi: 10.1016/j.cell.2013.08.041. PubMed DOI PMC