• This record comes from PubMed

NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose

. 2023 May 31 ; 137 (10) : 847-862.

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

A previous study on neuropeptide FF receptor 2 (NPFFR2)-deficient mice has demonstrated that NPFFR2 is involved in the control of energy balance and thermogenesis. Here, we report on the metabolic impact of NPFFR2 deficiency in male and female mice that were fed either a standard diet (STD) or a high-fat diet (HFD) and each experimental group consisted of ten individuals. Both male and female NPFFR2 knockout (KO) mice exhibited severe glucose intolerance that was exacerbated by a HFD diet. In addition, reduced insulin pathway signaling proteins in NPFFR2 KO mice fed a HFD resulted in the development of hypothalamic insulin resistance. HFD feeding did not cause liver steatosis in NPFFR2 KO mice of either sex, but NPFFR2 KO male mice fed a HFD had lower body weights, white adipose tissues, and liver and lower plasma leptin levels compared with their wild-type (WT) controls. Lower liver weight in NPFFR2 KO male mice compensated for HFD-induced metabolic stress by increased liver PPARα and plasma FGF21 hepatokine, which supported fatty acid β-oxidation in the liver and white adipose tissue. Conversely, NPFFR2 deletion in female mice attenuated the expression of Adra3β and Pparγ, which inhibited lipolysis in adipose tissue.

See more in PubMed

Elhabazi K., Humbert J.P., Bertin I., Schmitt M., Bihel F., Bourguignon J.J.et al. . (2013) Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 75, 164–171 10.1016/j.neuropharm.2013.07.012 PubMed DOI

Murase T., Arima H., Kondo K. and Oiso Y. (1996) Neuropeptide FF reduces food intake in rats. Peptides 17, 353–354 10.1016/0196-9781(95)02137-X PubMed DOI

Sunter D., Hewson A.K., Lynam S. and Dickson S.L. (2001) Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neurosci. Lett. 313, 145–148 10.1016/S0304-3940(01)02267-4 PubMed DOI

Cline M.A., Nandar W. and Rogers J.O. (2007) Central neuropeptide FF reduces feed consumption and affects hypothalamic chemistry in chicks. Neuropeptides 41, 433–439 10.1016/j.npep.2007.08.003 PubMed DOI

Zhang L., Koller J., Gopalasingam G., Qi Y. and Herzog H. (2022) Central NPFF signalling is critical in the regulation of glucose homeostasis. Mol. Metab. 62, 101525 10.1016/j.molmet.2022.101525 PubMed DOI PMC

Lefrere I., De Coppet P., Camelin J.C., Le Lay S., Mercier N., Elshourbagy N.et al. . (2002) Neuropeptide AF and FF modulation of adipocyte metabolism. Primary insights from functional genomics and effects on beta-adrenergic responsiveness. J. Biol. Chem. 277, 39169–39178 PubMed

Karnosova A., Strnadova V., Hola L., Zelezna B., Kunes J. and Maletinska L. (2021) Palmitoylation of prolactin-releasing peptide increased affinity for and activation of the GPR10, NPFF-R2 and NPFF-R1 receptors: in vitro study. Int. J. Mol. Sci. 22, 8904–24 10.3390/ijms22168904 PubMed DOI PMC

Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M.et al. . (2000) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 275, 39324–39331 10.1074/jbc.M004385200 PubMed DOI

Zhang L., Ip C.K., Lee I.J., Qi Y., Reed F., Karl T.et al. . (2018) Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat. Commun. 9, 4722 10.1038/s41467-018-06462-0 PubMed DOI PMC

Yi M., Li H., Wu Z., Yan J., Liu Q., Ou C.et al. . (2018) A promising therapeutic target for metabolic diseases: neuropeptide Y receptors in humans. Cell. Physiol. Biochem. 45, 88–107 10.1159/000486225 PubMed DOI

Gouardères C., Quelven I., Mollereau C., Mazarguil H., Rice S.Q. and Zajac J.M. (2002) Quantitative autoradiographic distribution of NPFF1 neuropeptide FF receptor in the rat brain and comparison with NPFF2 receptor by using [125I]YVP and [(125I]EYF as selective radioligands. Neuroscience 115, 349–361 10.1016/S0306-4522(02)00419-0 PubMed DOI

Goncharuk V. and Jhamandas J.H. (2008) Neuropeptide FF2 receptor distribution in the human brain. An immunohistochemical study. Peptides 29, 1544–1553 10.1016/j.peptides.2008.05.004 PubMed DOI

Gouardères C., Puget A. and Zajac J.M. (2004) Detailed distribution of neuropeptide FF receptors (NPFF1 and NPFF2) in the rat, mouse, octodon, rabbit, guinea pig, and marmoset monkey brains: a comparative autoradiographic study. Synapse 51, 249–269 10.1002/syn.10305 PubMed DOI

Liu Q., Guan X.M., Martin W.J., McDonald T.P., Clements M.K., Jiang Q.et al. . (2001) Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J. Biol. Chem. 276, 36961–36969 10.1074/jbc.M105308200 PubMed DOI

Waqas S.F.H., Hoang A.C., Lin Y.T., Ampem G., Azegrouz H., Balogh L.et al. . (2017) Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J. Clin. Invest. 127, 2842–2854 10.1172/JCI90152 PubMed DOI PMC

Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B.et al. . (2017) Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PloS ONE 12, e0183449 10.1371/journal.pone.0183449 PubMed DOI PMC

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M.et al. . (2015) Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obesity 39, 986–993 10.1038/ijo.2015.28 PubMed DOI

Kunes J., Prazienkova V., Popelova A., Mikulaskova B., Zemenova J. and Maletinska L. (2016) Prolactin-releasing peptide: a new tool for obesity treatment. J. Endocrinol. 230, R51–R58 10.1530/JOE-16-0046 PubMed DOI

Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L.et al. . (2021) GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 774, 145427 10.1016/j.gene.2021.145427 PubMed DOI

Jenickova I., Kasparek P., Petrezselyova S., Elias J., Prochazka J., Kopkanova J.et al. . (2021) Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods 191, 87–94 10.1016/j.ymeth.2020.07.005 PubMed DOI

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M.et al. . (2015) Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. (Lond.) 39, 986–993 10.1038/ijo.2015.28 PubMed DOI

Blechova M., Nagelova V., Zakova L., Demianova Z., Zelezna B. and Maletinska L. (2013) New analogs of the CART peptide with anorexigenic potency: the importance of individual disulfide bridges. Peptides 39, 138–144 10.1016/j.peptides.2012.09.033 PubMed DOI

Maletinska L., Matyskova R., Maixnerova J., Sykora D., Pychova M., Spolcova A.et al. . (2011) The peptidic GHS-R antagonist [D-Lys(3)]GHRP-6 markedly improves adiposity and related metabolic abnormalities in a mouse model of postmenopausal obesity. Mol. Cell. Endocrinol. 343, 55–62 10.1016/j.mce.2011.06.006 PubMed DOI

Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J.et al. . (2015) Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 45, 823–835 10.3233/JAD-143150 PubMed DOI

Arch J.R. (2015) Horizons in the pharmacotherapy of obesity. Curr. Obes. Rep. 4, 451–459 10.1007/s13679-015-0177-4 PubMed DOI

Patel D. (2015) Pharmacotherapy for the management of obesity. Metabolism 64, 1376–1385 10.1016/j.metabol.2015.08.001 PubMed DOI

Bray G.A., Frühbeck G., Ryan D.H. and Wilding J.P.H. (2016) Management of obesity. Lancet North Am. Ed. 387, 1947–1956 10.1016/S0140-6736(16)00271-3 PubMed DOI

Mikulaskova B., Holubova M., Prazienkova V., Zemenova J., Hruba L., Haluzik M.et al. . (2018) Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutr. Diab. 8, 5 10.1038/s41387-017-0015-8 PubMed DOI PMC

Strnadova V., Karnosova A., Blechova M., Neprasova B., Hola L., Nemcova A.et al. . (2023) Search for lipidized PrRP analogs with strong anorexigenic effect: in vitro and in vivo studies. Neuropeptides 98, 102319 10.1016/j.npep.2022.102319 PubMed DOI

Gu W., Geddes B.J., Zhang C., Foley K.P. and Stricker-Krongrad A. (2004) The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosci. 22, 93–103 10.1385/JMN:22:1-2:93 PubMed DOI

Bjursell M., Lenneras M., Goransson M., Elmgren A. and Bohlooly Y.M. (2007) GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 363, 633–638 10.1016/j.bbrc.2007.09.016 PubMed DOI

Zhang L., Koller J., Ip C.K., Gopalasingam G., Bajaj N., Lee N.J.et al. . (2021) Lack of neuropeptide FF signalling in mice leads to reduced repetitive behavior, altered drinking behavior, and fuel type selection. FASEB J. 35, e21980 10.1096/fj.202100703R PubMed DOI

Lin Y.T., Yu Y.L., Hong W.C., Yeh T.S., Chen T.C. and Chen J.C. (2017) NPFFR2 activates the HPA axis and induces anxiogenic effects in rodents. Int. J. Mol. Sci. 18, 1018–23 10.3390/ijms18081810 PubMed DOI PMC

Lin Y.T., Huang Y.L., Tsai S.C. and Chen J.C. (2020) Ablation of NPFFR2 in mice reduces response to single prolonged stress model. Cells 9, 2479–92 10.3390/cells9112479 PubMed DOI PMC

Fruhbeck G. and Gomez-Ambrosi J. (2001) Modulation of the leptin-induced white adipose tissue lipolysis by nitric oxide. Cell. Signal. 13, 827–833 10.1016/S0898-6568(01)00211-X PubMed DOI

Fruhbeck G., Gomez-Ambrosi J. and Salvador J. (2001) Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 15, 333–340 10.1096/fj.00-0249com PubMed DOI

Dodd G.T. and Luckman S.M. (2013) Physiological roles of GPR10 and PrRP signaling. Front Endocrinol. (Lausanne) 4, 20 10.3389/fendo.2013.00020 PubMed DOI PMC

Engel D.F. and Velloso L.A. (2022) The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 208, 108983 10.1016/j.neuropharm.2022.108983 PubMed DOI

Ullah R., Rauf N., Nabi G., Yi S., Yu-Dong Z. and Fu J. (2021) Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed. Pharmacother. 142, 112012 10.1016/j.biopha.2021.112012 PubMed DOI

Balland E., Chen W., Dodd G.T., Conductier G., Coppari R., Tiganis T.et al. . (2019) Leptin signaling in the arcuate nucleus reduces insulin's capacity to suppress hepatic glucose production in obese mice. Cell Rep. 26, 346–355, e343 10.1016/j.celrep.2018.12.061 PubMed DOI

de Carvalho F.P., Moretto T.L., Benfato I.D., Barthichoto M., Ferreira S.M., Costa-Junior J.M.et al. . (2018) Central and peripheral effects of physical exercise without weight reduction in obese and lean mice. Biosci. Rep. 38, BSR20171033 10.1042/BSR20171033 PubMed DOI PMC

Tuncman G., Hirosumi J., Solinas G., Chang L., Karin M. and Hotamisligil G.S. (2006) Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl. Acad. Sci. U.S.A. 103, 10741–10746 10.1073/pnas.0603509103 PubMed DOI PMC

Schattenberg J.M., Singh R., Wang Y., Lefkowitch J.H., Rigoli R.M., Scherer P.E.et al. . (2006) JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43, 163–172 10.1002/hep.20999 PubMed DOI

Singh R., Wang Y., Xiang Y., Tanaka K.E., Gaarde W.A. and Czaja M.J. (2009) Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49, 87–96 10.1002/hep.22578 PubMed DOI PMC

Vernia S., Cavanagh-Kyros J., Garcia-Haro L., Sabio G., Barrett T., Jung D.Y.et al. . (2014) The PPARalpha-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 20, 512–525 10.1016/j.cmet.2014.06.010 PubMed DOI PMC

Solinas G. and Becattini B. (2017) JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol. Metab. 6, 174–184 10.1016/j.molmet.2016.12.001 PubMed DOI PMC

Tzanavari T., Giannogonas P. and Karalis K.P. (2010) TNF-alpha and obesity. Curr. Dir. Autoimmun. 11, 145–156 10.1159/000289203 PubMed DOI

Valentine J.M., Ahmadian M., Keinan O., Abu-Odeh M., Zhao P., Zhou X.et al. . (2022) beta3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J. Clin. Invest. 132, e153357 10.1172/JCI153357 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...