Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes

. 2023 Sep 22 ; 193 (2) : 980-1000.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37220420

Grantová podpora
I 5234 Austrian Science Fund FWF - Austria

Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.

Zobrazit více v PubMed

Adams WW, Stewart JJ, Cohu CM, Muller O, Demmig-Adams B. Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature. Front Plant Sci. 2016:7(1026). 10.3389/fpls.2016.01026 PubMed DOI PMC

Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 2013:14(1):722. 10.1186/1471-2164-14-722 PubMed DOI PMC

Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J. 2011:67(5):869–884. 10.1111/j.1365-313X.2011.04640.x PubMed DOI

Chae K, Gonong BJ, Kim SC, Kieslich CA, Morikis D, Balasubramanian S, Lord EM. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot. 2010:61(15):4277–4290. 10.1093/jxb/erq228 PubMed DOI PMC

Clauw P, Kerdaffrec E, Gunis J, Reichardt-Gomez I, Nizhynska V, Koemeda S, Jez J, Nordborg M. Locally adaptive temperature response of vegetative growth in Arabidopsis thaliana. eLife. 2022:11:e77913. 10.7554/eLife.77913 PubMed DOI PMC

Demirel U, Morris WL, Ducreux LJM, Yavuz C, Asim A, Tindas I, Campbell R, Morris JA, Verrall SR, Hedley PE, et al.Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front Plant Sci. 2020:11(169). 10.3389/fpls.2020.00169 PubMed DOI PMC

Ding Y, Shi Y, Yang S. Molecular regulation of plant responses to environmental temperatures. Mol Plant. 2020:13(4):544–564. 10.1016/j.molp.2020.02.004 PubMed DOI

Dyson BC, Miller MAE, Feil R, Rattray N, Bowsher CG, Goodacre R, Lunn JE, Johnson GN. FUM2, A cytosolic fumarase, is essential for acclimation to low temperature in Arabidopsis thaliana. Plant Physiol. 2016:172(1):118–127. 10.1104/pp.16.00852 PubMed DOI PMC

Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011:4(3):250–255. 10.3835/plantgenome2011.08.0024 DOI

Espinoza C, Degenkolbe T, Caldana C, Zuther E, Leisse A, Willmitzer L, Hincha DK, Hannah MA. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS One 2010:5(11):e14101. 10.1371/journal.pone.0014101 PubMed DOI PMC

Ferrero-serrano Á, Assmann SM. Phenotypic and genome-wide association of natural variation with the local environment of Arabidopsis. Nat Ecol Evol. 2019:3(2):1–41. 10.1038/s41559-018-0754-5 PubMed DOI

Fick SE, Hijmans RJ. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017:37(12):4302–4315. 10.1002/joc.5086 DOI

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010:33(1):1–22. 10.18637/jss.v033.i01 PubMed DOI PMC

Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, GTEx Consortium, Nicolae DL, et al.A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015:47(9):1091–1098. 10.1038/ng.3367 PubMed DOI PMC

Gehan MA, Park S, Gilmour SJ, An C, Lee CM, Thomashow MF. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J. 2015:84(4):682–693. 10.1111/tpj.13027 PubMed DOI

Geigenberger P, Stitt M. A futile cycle of sucrose synthesis and degradation is involved regulating partitioning between sucrose starch and respiration in cotyledons of germinating Ricinus communis L. seedlings when phloem transport is inhibited. Planta 1991:185(1):81–90. 10.1007/BF00194518 PubMed DOI

Gilmour AR, Thompson R, Cullis BR. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 1995:51(4):1440–1450. 10.2307/2533274 DOI

Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol. 2016:25(8):1665–1680. 10.1111/mec.13563 PubMed DOI

Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. Metabolomics of temperature stress. Physiol Plant. 2008:132(2):220–235. 10.1111/j.1399-3054.2007.00999.x PubMed DOI

Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 2006:142(1):98–112. 10.1104/pp.106.081141 PubMed DOI PMC

Herrmann HA, Schwartz J-M, Johnson GN. Metabolic acclimation—a key to enhancing photosynthesis in changing environments? J Exp Bot. 2019:70(12):3043–3056. 10.1093/jxb/erz157 PubMed DOI

Hoffmann MH. Biogeography of Arabidopsis thaliana (L.). J Biogeogr. 2002:29(1):125–134. 10.1046/j.1365-2699.2002.00647.x DOI

Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 2017:18(1):155. 10.1186/s13059-017-1288-x PubMed DOI PMC

Horton MW, Willems G, Sasaki E, Koornneef M, Nordborg M. The genetic architecture of freezing tolerance varies across the range of Arabidopsis thaliana. Plant Cell Environ. 2016:39(11):2570–2579. 10.1111/pce.12812 PubMed DOI

Houshyani B, Kabouw P, Muth D, de Vos RCH, Bino RJ, Bouwmeester HJ. Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics 2012:8(S1):131–145. 10.1007/s11306-011-0375-3 PubMed DOI PMC

Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K. Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of xTriticosecale wittm. PLoS One 2015:10(8):e0135002. 10.1371/journal.pone.0135002 PubMed DOI PMC

Hurry V. Metabolic reprogramming in response to cold stress is like real estate, it's all about location. Plant Cell Environ. 2017:40(5):599–601. 10.1111/pce.12923 PubMed DOI

Junker A, Muraya MM, Weigelt-Fischer K, Arana-Ceballos F, Klukas C, Melchinger AE, Meyer RC, Riewe D, Altmann T.. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front Plant Sci. 2015:5:52. 10.3389/fpls.2014.00770 PubMed DOI PMC

Kawakatsu T, Huang SS, Jupe F, Sasaki E, Schmitz RJ, Urich MA, Castanon R, Nery JR, Barragan C, He Y, et al.Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 2016:166(2):492–505. 10.1016/j.cell.2016.06.044 PubMed DOI PMC

Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 2007:39(9):1151–1155. 10.1038/ng2115 PubMed DOI

Kleessen S, Antonio C, Sulpice R, Laitinen R, Fernie AR, Stitt M, Nikoloski Z. Structured patterns in geographic variability of metabolic phenotypes in Arabidopsis thaliana. Nat Commun. 2012:3(1):1317–1319. 10.1038/ncomms2333 PubMed DOI

Koornneef M, Alonso-Blanco C, Vreugdenhil D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol. 2004:55(1):141–172. 10.1146/annurev.arplant.55.031903.141605 PubMed DOI

Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012:63(4):1593–1608. 10.1093/jxb/err460 PubMed DOI PMC

Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R, Keurentjes JJB, van Eeuwijk FA. Marker-based estimation of heritability in immortal populations. Genetics 2015:199(2):379–398. 10.1534/genetics.114.167916 PubMed DOI PMC

Lan Y, Sun R, Ouyang J, Ding W, Kim MJ, Wu J, Li Y, Shi T. AtMAD: Arabidopsis thaliana multi-omics association database. Nucleic Acids Res. 2021:49(D1):D1445–D1451. 10.1093/nar/gkaa1042 PubMed DOI PMC

Larcher W. Effects of low temperature stress and frost injury on plant productivity. In: Johnson CB, editors. Physiological processes limiting plant productivity. London: Butterworth; 1981. p. 253–269.

Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol. 2008:147(1):316–330. 10.1104/pp.108.115733 PubMed DOI PMC

Levitt J. Responses of plants to environmental stresses. New York: Academic Press, INC; 1980.

Li B, Ritchie MD. From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. Front Genet. 2021:12:713230. 10.3389/fgene.2021.713230 PubMed DOI PMC

Lin X, Zhou M, Yao J, Li QQ, Zhang YY. Phenotypic and methylome responses to salt stress in Arabidopsis thaliana natural accessions. Front Plant Sci. 2022:13:841154. 10.3389/fpls.2022.841154 PubMed DOI PMC

Liu J, He Z. Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci. 2020:11:595603. 10.3389/fpls.2020.595603 PubMed DOI PMC

Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005:444(2):139–158. 10.1016/j.abb.2005.10.018 PubMed DOI

Martínez-Berdeja A, Stitzer MC, Taylor MA, Okada M, Ezcurra E, Runcie DE, Schmitt J. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2020:117(5):2526–2534. 10.1073/pnas.1912451117 PubMed DOI PMC

Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, et al.The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007:104(11):4759–4764. 10.1073/pnas.0609709104 PubMed DOI PMC

Mitchell-Olds T, Schmitt J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 2006:441(7096):947–952. 10.1038/nature04878 PubMed DOI

Nägele T. Linking metabolomics data to underlying metabolic regulation. Front Mol Biosci. 2014:1:1–6. 10.3389/fmolb.2014.00022 PubMed DOI PMC

Nägele T, Mair A, Sun X, Fragner L, Teige M, Weckwerth W. Solving the differential biochemical Jacobian from metabolomics covariance data. PLoS One 2014:9(4):e92299. 10.1371/journal.pone.0092299 PubMed DOI PMC

Nägele T, Stutz S, Hörmiller II, Heyer AG. Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. Plant J. 2012:72(1):102–114. 10.1111/j.1365-313X.2012.05064.x PubMed DOI

Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, et al.The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005:3(7):e196. 10.1371/journal.pbio.0030196 PubMed DOI PMC

Patzke K, Prananingrum P, Klemens PAW, Trentmann O, Rodrigues CM, Keller I, Fernie AR, Geigenberger P, Bölter B, Lehmann M, et al.The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiol. 2019:179(2):569–587. 10.1104/pp.18.01036 PubMed DOI PMC

Perlaza-Jiménez L, Walther D. A genome-wide scan for correlated mutations detects macromolecular and chromatin interactions in Arabidopsis thaliana. Nucleic Acids Res. 2018:46(16):8114–8132. 10.1093/nar/gky576 PubMed DOI PMC

Pigliucci M. Ecological and evolutionary genetics of Arabidopsis. Trends Plant Sci. 1998:3(12):485–489. 10.1016/S1360-1385(98)01343-0 DOI

Planchais S, Cabassa C, Toka I, Justin AM, Renou JP, Savoure A, Carol P. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves. Front Plant Sci. 2014:5:330. 10.3389/fpls.2014.00330 PubMed DOI PMC

R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

Riewe D, Jeon HJ, Lisec J, Heuermann MC, Schmeichel J, Seyfarth M, Meyer RC, Willmitzer L, Altmann T. A naturally occurring promoter polymorphism of the Arabidopsis FUM2 gene causes expression variation, and is associated with metabolic and growth traits. Plant J. 2016:88(5):826–838. 10.1111/tpj.13303 PubMed DOI

Ruan Y-L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014:65(1):33–67. 10.1146/annurev-arplant-050213-040251 PubMed DOI

Saunders HA, Calzadilla PI, Schwartz J-M, Johnson GN. Cytosolic fumarase acts as a metabolic fail-safe for both high and low temperature acclimation of Arabidopsis thaliana. J Exp Bot. 2022:73(7):2112–2124. 10.1093/jxb/erab560 PubMed DOI

Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Rajagopal N, Nery JR, Urich MA, Chen H, et al.Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 2015:523(7559):212–216. 10.1038/nature14465 PubMed DOI PMC

Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep. 2016:6(1):34027. 10.1038/srep34027 PubMed DOI PMC

Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J. 2012:69(3):529–541. 10.1111/j.1365-313X.2011.04812.x PubMed DOI

Shankar R, Bhattacharjee A, Jain M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep. 2016:6(1):23719. 10.1038/srep23719 PubMed DOI PMC

Strand A, Foyer CH, Gustafsson P, Gardeström P, Hurry V. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ. 2003:26(4):523–535. 10.1046/j.1365-3040.2003.00983.x DOI

Strand A, Hurry V, Gustafsson P, Gardeström P. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J. 1997:12(3):605–614. 10.1111/j.0960-7412.1997.00605.x PubMed DOI

Sun XL, Weckwerth W. COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 2012:8(S1):81–93. 10.1007/s11306-012-0399-3 DOI

Takahashi D, Gorka M, Erban A, Graf A, Kopka J, Zuther E, Hincha DK. Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Sci Rep. 2019:9(1):2289. 10.1038/s41598-019-38688-3 PubMed DOI PMC

Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H. Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot. 2010:67(3):429–443. 10.1016/j.envexpbot.2009.09.004 DOI

The 1001 Genomes Consortium . 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 2016:166(2):481–491. 10.1016/j.cell.2016.05.063 PubMed DOI PMC

Thomashow MF. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 2010:154(2):571–577. 10.1104/pp.110.161794 PubMed DOI PMC

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010:153(3):895–905. 10.1104/pp.110.155119 PubMed DOI PMC

Weckwerth W. Toward a unification of system-theoretical principles in biology and ecology—the stochastic lyapunov matrix equation and its inverse application. Front Appl Math Stat. 2019:5:29. 10.3389/fams.2019.00029 DOI

Weiszmann J, Fürtauer L, Weckwerth W, Nägele T. Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J. 2018:285(21):4082–4098. 10.1111/febs.14656 PubMed DOI

Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ. 2011:34(9):1488–1506. 10.1111/j.1365-3040.2011.02347.x PubMed DOI

Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, Grolemund G, Hayes A, Henry L, Hester J, et al.Welcome to the Tidyverse. J Open Source Software. 2019:4(43):1686. 10.21105/joss.01686 DOI

Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W.. Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics. 2008:7(9):1725–1736.10.1074/mcp.M700273-MCP200 PubMed DOI PMC

Wilson JL, Nägele T, Linke M, Demel F, Fritsch SD, Mayr HK, Cai Z, Katholnig K, Sun X, Fragner L, et al.Inverse data-driven modeling and multiomics analysis reveals Phgdh as a metabolic checkpoint of macrophage polarization and proliferation. Cell Rep. 2020:30(5):1542–1552.e1547. 10.1016/j.celrep.2020.01.011 PubMed DOI PMC

Witte CP. Urea metabolism in plants. Plant Sci. 2011:180(3):431–438. 10.1016/j.plantsci.2010.11.010 PubMed DOI

Zhen Y, Ungerer MC. Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytologist. 2008:177(2):419–427. 10.1111/j.1469-8137.2007.02262.x PubMed DOI

Zuther E, Schulz E, Childs LH, Hincha DK. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ. 2012:35(10):1860–1878. 10.1111/j.1365-3040.2012.02522.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...