A perspective on genetic and polygenic risk scores-advances and limitations and overview of associated tools

. 2024 Mar 27 ; 25 (3) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38770718

Grantová podpora
FEKT/FIT-J-23-8274 Brno University of Technology intra-university junior project

Polygenetic Risk Scores are used to evaluate an individual's vulnerability to developing specific diseases or conditions based on their genetic composition, by taking into account numerous genetic variations. This article provides an overview of the concept of Polygenic Risk Scores (PRS). We elucidate the historical advancements of PRS, their advantages and shortcomings in comparison with other predictive methods, and discuss their conceptual limitations in light of the complexity of biological systems. Furthermore, we provide a survey of published tools for computing PRS and associated resources. The various tools and software packages are categorized based on their technical utility for users or prospective developers. Understanding the array of available tools and their limitations is crucial for accurately assessing and predicting disease risks, facilitating early interventions, and guiding personalized healthcare decisions. Additionally, we also identify potential new avenues for future bioinformatic analyzes and advancements related to PRS.

Zobrazit více v PubMed

Parkash R, Stevenson WG, Epstein LM, Maisel WH. Predicting early mortality after implantable defibrillator implantation: a clinical risk score for optimal patient selection. Am Heart J 2006;151(2):397–403. PubMed

Brabrand M, Folkestad L, Clausen NG, et al. . Risk scoring systems for adults admitted to the emergency department: a systematic review. Scand J Trauma Resusc Emerg Med 2010;18:8. PubMed PMC

Ward D, Wooderson P. Automotive cyber-security integrity levels. In: 11th International Conference on System Safety and Cyber-Security (SSCS 2016), London, UK, IET, 2016, 1–10.

Lewis CM, Vassos E. Polygenic Risk Scores: from research tools to clinical instruments. Genome Med 2020;12(1):44. PubMed PMC

Thomas LC. Consumer finance: challenges for operational research. J Oper Res Soc 2010;61(1):41–52.

Guo L. A qualitative method for risk preference of insurance companies. In: 2009 International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, IEEE, 2009, 156–9.

Roldán-Molina G, Almache-Cueva M, Silva-Rabadão C, et al. . A comparison of cybersecurity risk analysis tools. Procedia Comput Sci 2017;121:568–75.

Mistry S, Harrison JR, Smith DJ, et al. . The use of Polygenic Risk Scores to identify phenotypes associated with genetic risk of schizophrenia: systematic review. Schizophr Res 2018;197:2–8. PubMed

Igo RP, Kinzy TG, Cooke Bailey JN. Genetic Risk Scores. Curr Protoc Hum Genet 2019;104(1):e95. PubMed PMC

Lambert SA, Abraham G, Inouye M. Towards clinical utility of Polygenic Risk Scores. Hum Mol Genet 2019;28(R2):R133–42. PubMed

Collister JA, Liu X, Clifton L. Calculating Polygenic Risk Scores (PRS) in UK biobank: a practical guide for epidemiologists. Front Genet 2022;13:818574. PubMed PMC

Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics 2015;31(9):1466–8. PubMed PMC

Corvin A, Craddock N, Sullivan PF. Genome-Wide Association Studies: a primer. Psychol Med 2010;40(7):1063–77. PubMed PMC

Uffelmann E, Huang QQ, Munung NS, et al. . Genome-Wide Association Studies. Nat Rev Methods Primers 2021;1:59.

Roberts E, Howell S, Evans DG. Polygenic Risk Scores and breast cancer risk prediction. Breast 2023;67:71–7. PubMed PMC

Zemunik T, Borask V. Genetics of type 1 diabetes. In: Type 1 Diabetes - Pathogenesis, Genetics and Immunotherapy. InTech, 2011. Available at: 10.5772/21880. DOI

Lewis CM, Vassos E. Polygenic Risk Scores: from research tools to clinical instruments. Genome Med 2020;12(1):44. PubMed PMC

Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics 2015;31(9):1466–8. PubMed PMC

Bogdan R, Baranger DAA, Agrawal A. Polygenic Risk Scores in clinical psychology: bridging genomic risk to individual differences. Annu Rev Clin Psychol 2018;14(1):119–57. PubMed PMC

Curtis D. Polygenic Risk Score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr Genet 2018;28(5):85–9. PubMed

Halldorsdottir T, Piechaczek C, De Matos APS, et al. . Polygenic risk: predicting depression outcomes in clinical and epidemiological cohorts of youths. Am J Psychiatry 2019;176(8):615–25. PubMed

Uffelmann E, Huang QQ, Munung NS, et al. . Genome-Wide Association Studies. Nat Rev Methods Primers 2021;1:59.

Crouch DJM, Bodmer WF. Polygenic inheritance, GWAS, Polygenic Risk Scores, and the search for functional variants. Proc Natl Acad Sci 2020;117(32):18924–33. PubMed PMC

Zhao Z, Yi Y, Song J, et al. . PUMAS: fine-tuning Polygenic Risk Scores with GWAS summary statistics. Genome Biol 2021;22(1):257. PubMed PMC

Roberts MR, Asgari MM, Toland AE. Genome-Wide association studies and Polygenic Risk Scores for skin cancer: clinically useful yet? Br J Dermatol 2019;181(6):1146–55. PubMed PMC

Rao AS, Knowles JW. Polygenic Risk Scores in coronary artery disease. Curr Opin Cardiol 2019;34(4):435–40. PubMed

Schork NJ, Fallin D, Lanchbury JS, et al. . Mini review. Clin Genet 2000;58:250–64. PubMed

Collister JA, Liu X, Clifton L. Calculating Polygenic Risk Scores (PRS) in UK biobank: a practical guide for epidemiologists. Front Genet 2022;13:818574. PubMed PMC

Massi MC, Franco NR, Manzoni A, et al. . Learning high-order interactions for polygenic risk prediction. PloS One 2023;18(2):e0281618. PubMed PMC

Sullivan GM, Feinn R. Using effect size—or why the p value is not enough. J Grad Med Educ 2012;4(3):279–82. PubMed PMC

Wray NR, Goddard ME. Multi-locus models of genetic risk of disease. Genome Med 2010;2(2):10. PubMed PMC

Choi SW, Mak TSH, O’Reilly PF. Tutorial: a guide to performing Polygenic Risk Score analyses. Nat Protoc 2020;15(9):2759–72. PubMed PMC

Menard S. Coefficients of determination for multiple logistic regression analysis. Am Stat 2000;54(1):17–24.

Shoemaker JS. Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet 1999;15(9):354–8. PubMed

Purcell S, Neale B, Todd-Brown K, et al. . PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81(3):559–75. PubMed PMC

Marees AT, Kluiver H, Stringer S, et al. . A tutorial on conducting Genome-Wide Association Studies: quality control and statistical analysis. Int J Methods Psychiatr Res 2018;27(2):e1608. PubMed PMC

Simona A, Song W, Bates DW, Samer CF. Polygenic Risk Scores in pharmacogenomics: opportunities and challenges—a mini review. Front Genet 2023;14:1217049. PubMed PMC

Weckwerth W. Metabolomics in systems biology. Annu Rev Plant Biol 2003;54:669–89. PubMed

Weckwerth W. Unpredictability of metabolism-the key role of metabolomics science in combination with next-generation genome sequencing. Anal Bioanal Chem 2011;400(7):1967–78. PubMed PMC

Weckwerth W. Toward a unification of system-theoretical principles in biology and ecology—the stochastic Lyapunov matrix equation and its inverse application. Front Appl Math Stat 2019;5:29.

Weckwerth W. Green systems biology - from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 2011;75(1):284–305. PubMed

Weckwerth W, Ghatak A, Bellaire A, et al. . PANOMICS meets germplasm. Plant Biotechnol J 2020;18(7):1507–25. PubMed PMC

Schwarzerova J, Bajger A, Pierdou I, et al. . An innovative perspective on metabolomics data analysis in biomedical research using concept drift detection. In: Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine. BIBM, Houston, TX, USA, 2021, 3075–82.

Schwarzerova J, Kostoval A, Bajger A. et al. , A revealed imperfection in concept drift correction in metabolomics modeling. In: International Conference on Information Technologies in Biomedicine Cham: Springer International Publishing, 2022, 498–509.

Weiszmann J, Walther D, Clauw P, et al. . Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. Plant Physiol 2023;193(2):980–1000. PubMed PMC

Wilson JL, Nägele T, Linke M, et al. . Inverse data-driven modeling and multiomics analysis reveals PHGDH as a metabolic checkpoint of macrophage polarization and proliferation. Cell Rep 2020;30(5):1542–1552.e7. PubMed PMC

Cai Z, Li W, Hager S, et al. . Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling. Cell Mol Immunol 2024;21(5):448–65. PubMed PMC

Gómez-Márquez J. What are the principles that govern life? Commun Integr Biol 2020;13(1):97–107. PubMed PMC

Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab 2016;4:4. PubMed PMC

Soltow QA, Jones DP, Promislow DEL. A network perspective on metabolism and aging. Integr Comp Biol 2010;50(5):844–54. PubMed PMC

Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab 2016;4:4. PubMed PMC

Abraham G, Inouye M. Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev 2015;33:10–6. PubMed

Go MJ, Lee Y, Park S, et al. . Genetic-risk assessment of GWAS-derived susceptibility loci for type 2 diabetes in a 10 year follow-up of a population-based cohort study. J Hum Genet 2016;61(12):1009–12. PubMed

Conti DV, Darst BF, Moss LC, et al. . Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet 2021;53(1):65–75. PubMed PMC

Vilhjálmsson BJ, Yang J, Finucane HK, et al. . Modeling linkage disequilibrium increases accuracy of Polygenic Risk Scores. Am J Hum Genet 2015;97(4):576–92. PubMed PMC

Speed D, Balding DJ. SumHer better estimates the SNP heritability of complex traits from summary statistics. Nat Genet 2019;51(2):277–84. PubMed PMC

Bulik-Sullivan BK, Loh P-R, Finucane HK, et al. . LD score regression distinguishes confounding from polygenicity in Genome-Wide Association Studies. Nat Genet 2015;47(3):291–5. PubMed PMC

Hurta M, Schwarzerova J, Naegele T, et al. . Utilizing genetic programming to enhance Polygenic Risk Score calculation. In: Proceedings – 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine. BIBM, Istanbul, Turkiye, 2023, 3782–7.

Harik GR, Goldberg DE. Learning linkage. In FOGA 1996;247–62.

Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics 2020;36:5424–31. PubMed PMC

Kumar S, Ambrosini G, Bucher P. SNP2TFBS-a database of regulatory SNPs affecting predicted transcription factor binding site affinity. Nucleic Acids Res 2017;45(D1):D139–44. PubMed PMC

Butler RR, Gejman PV. Clinotator: analyzing ClinVar variation reports to prioritize reclassification efforts. F1000Res 2018;7:462. PubMed PMC

Luis J, Alarcon C, Antonio Enriquez J, et al. . Frequency Conservation Score (FCS): the power of conservation and allele frequency for variant pathogenic prediction. bioRxiv 2019:805051.

Ge T, Chen CY, Ni Y, et al. . Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun 2019;10(1):1776. PubMed PMC

Choi SW, O’Reilly P. PRSice 2: Polygenic Risk Score software (updated) and its application to cross-trait analyses. Eur Neuropsychopharmacol 2019;29:S832.

Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019;8(7):giz082. PubMed PMC

Lloyd-Jones LR, Zeng J, Sidorenko J, et al. . Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat Commun 2019;10(1):5086. PubMed PMC

Yang Z, Shang J, Li N, et al. . Development and validation of a 10-gene prognostic signature for acute myeloid leukaemia. J Cell Mol Med 2020;24(8):4510–23. PubMed PMC

Julienne H, Lechat P, Guillemot V, et al. . JASS: command line and web interface for the joint analysis of GWAS results. NAR Genom Bioinform 2020;2(1):lqaa003. PubMed PMC

Folkersen L, Pain O, Ingason A, et al. . Impute.Me: an open-source, non-profit tool for using data from direct-to-consumer genetic testing to calculate and interpret Polygenic Risk Scores. Front Genet 2020;11:578. PubMed PMC

Tran D, Nguyen H, Le U, et al. . A novel method for cancer subtyping and risk prediction using consensus factor analysis. Front Oncol 2020;10:1052. PubMed PMC

Carver T, Hartley S, Lee A, et al. . Canrisk tool—a web interface for the prediction of breast and ovarian cancer risk and the likelihood of carrying genetic pathogenic variants. Cancer Epidemiol Biomarkers Prev 2021;30(3):469–73. PubMed PMC

Lee A, Mavaddat N, Wilcox AN, et al. . BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med 2019;21(8):1708–18. PubMed PMC

Liu H, Li J, Leng J, et al. . Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China. Diabetes Metab Res Rev 2021;37(5):e3397. PubMed

Sun Q, Guo D, Li S, et al. . Combining gene expression signature with clinical features for survival stratication of gastric cancer. Genomics 2021;113(4):2683–94. PubMed

Aldisi R, Hassanin E, Sivalingam S, et al. . GenRisk: a tool for comprehensive genetic risk modeling. Bioinformatics 2022;38(9):2651–3. PubMed PMC

Aref L, Bastarache L, Hughey JJ. The phers R package: using phenotype risk scores based on electronic health records to study Mendelian disease and rare genetic variants. Bioinformatics 2022;38(21):4972–4. PubMed PMC

Huang D, Zhou Y, Yi X, et al. . VannoPortal: multiscale functional annotation of human genetic variants for interrogating molecular mechanism of traits and diseases. Nucleic Acids Res 2022;50(D1):D1408–16. PubMed PMC

Saglietto A, Gaita F, Blomstrom-Lundqvist C, et al. . AFA-Recur: an ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation. Europace 2023;25(1):92–100. PubMed PMC

Corte L, Liou L, O’reilly PF. et al. , Trumpet plots: visualizing the relationship between allele frequency and effect size in genetic association studies. GigaByte 2023;2023:gigabyte89. 10.46471/gigabyte.89. PubMed DOI PMC

Kelsoe J, The Bipolar Genome Study . The polygenic epistasis risk score demonstrates significant role of gene interaction in bipolar disorder. Eur Neuropsychopharmacol 2019;29:S807.

Massi MC, Franco NR, Manzoni A, et al. . Learning high-order interactions for polygenic risk prediction. PloS One 2023;18(2):e0281618. PubMed PMC

Dai Y, Shi G, Chen M, et al. . Using Polygenic Risk Scores related to complex traits to predict production performance in Cross-breeding of yeast. Journal of Fungi 2022;8(9):914. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...