Functional trait trade-offs define plant population stability across different biomes
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't
PubMed
37357858
PubMed Central
PMC10291713
DOI
10.1098/rspb.2023.0344
Knihovny.cz E-resources
- Keywords
- acquisitive, conservative, dispersal, long-term studies, temporal patterns, variability,
- MeSH
- Ecosystem * MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Plant Leaves MeSH
- Plants * MeSH
- Seeds MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.
Botany Department Senckenberg Natural History Museum Goerlitz 02806 Görlitz Germany
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
CIDE CSIC 46113 Valencia Spain
CREAF 08193 Cerdanyola del Vallès Catalonia Spain
CSIC Global Ecology Unit CREAF CSIC UAB 08193 Bellaterra Catalonia Spain
Department of Biological Sciences Kent State University Kent OH 44243 USA
Department of Biological Sciences University of Bergen 5006 Bergen Norway
Department of Botany and Zoology Masaryk University 61137 Brno Czech Republic
Department of Botany Faculty of Science Charles University 12801 Praha Czech Republic
Department of Botany Institute of Ecology and Earth Sciences University of Tartu 50409 Tartu Estonia
Department of Environmental Biology School of Sciences University of Navarra 31080 Pamplona Spain
Department of Environmental Science and Policy University of California Davis CA 95616 USA
Department of Plant Biology and Ecology University of Seville 41012 Sevilla Spain
Department of Plant Sciences University of California Davis CA 95616 USA
German Centre for Integrative Biodiversity Research Halle Jena Leipzig 04103 Leipzig Germany
Institute of Botany of the Czech Academy of Sciences 25243 Průhonice Czech Republic
Institute of Botany of the Czech Academy of Sciences 37901 Třeboň Czech Republic
Institute of Ecology and Botany Centre for Ecological Research 2163 Vácrátót Hungary
Institute of Entomology Czech Academy of Sciences 37005 Ceske Budejovice Czech Republic
International Institute Zittau Technische Universität Dresden Dresden 03583 Germany
Manaaki Whenua Landcare Research Lincoln 7608 New Zealand
Mpala Research Centre 100400 Nanyuki Kenya
Plant Ecology Group Institute of Evolution and Ecology University of Tübingen 72076 Tübingen Germany
Pyrenean Institute of Ecology 22700 Jaca Zaragoza Spain
School of Environmental Sciences University of Liverpool Liverpool L69 3GP UK
The James Hutton Institute Craigiebuckler Aberdeen AB15 8QH UK
UK Centre for Ecology and Hydrology Crowmarsh Gifford Wallingford OX10 8BB UK
Université Clermont Auvergne INRAE VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
Vegetation Ecology Institute of Natural Resource Sciences 8820 Wädenswil Switzerland
Wadden Sea National Park of Schleswig Holstein 25832 Tönning Germany
See more in PubMed
Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367, 363-365. (10.1038/367363a0) DOI
Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336-340. (10.1126/science.aaa1788) PubMed DOI
Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B. 2018. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763-778. (10.1111/ele.12928) PubMed DOI PMC
Thibaut LM, Connolly SR. 2013. Understanding diversity-stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140-150. (10.1111/ele.12019) PubMed DOI PMC
Hallett LM, et al. 2014. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95, 1693-1700. (10.1890/13-0895.1) PubMed DOI
Májeková M, de Bello F, Doležal J, Lepš J. 2014. Plant functional traits as determinants of population stability. Ecology 95, 2369-2374. (10.1890/13-1880.1) DOI
Lepš J, Osbornová-Kosinová J, Rejmánek M. 1982. Community stability, complexity and species life history strategies. Vegetatio 50, 53-63. (10.1007/BF00120678) DOI
Lepš J, Májeková M, Vítová A, Doležal J, de Bello F. 2018. Stabilizing effects in temporal fluctuations: management, traits, and species richness in high-diversity communities. Ecology 99, 360-371. (10.1002/ecy.2065) PubMed DOI
Pimm S. 1984. The complexity and stability of ecosystems. Nature 307, 321-326. (10.1038/307321a0) DOI
McCann KS. 2000. The diversity–stability debate. Nature 405, 228-233. (10.1038/35012234) PubMed DOI
Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P. 2000. Observed variability and trends in extreme climate events: a brief review. Bull. Am. Meteorol. Soc. 81, 417-425. (10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2) DOI
Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F. 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Glob. Change Biol. 18, 797-805. (10.1111/j.1365-2486.2011.02624.x) DOI
MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton, NJ: Princeton University Press.
Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545-556. (10.1046/j.1365-2435.2002.00664.x) DOI
Kattge J, et al. 2011. TRY - a global database of plant traits. Glob. Change Biol. 17, 2905-2935. (10.1111/j.1365-2486.2011.02451.x) DOI
Garnier E, Navas M, Grigulis K. 2016. Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford, UK: Oxford University Press.
Angert AL, Huxman TE, Chesson P, Venable DL. 2009. Functional tradeoffs determine species coexistence via the storage effect. Proc. Natl Acad. Sci. USA 34, 565-581. PubMed PMC
Metz J, Liancourt P, Kigel J, Harel D, Sternberg M, Tielbörger K. 2010. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98, 697-704. (10.1111/j.1365-2745.2010.01652.x) DOI
Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB. 2013. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294-1306. (10.1111/ele.12157) PubMed DOI
Díaz S, et al. 2016. The global spectrum of plant form and function. Nature 529, 167-171. (10.1038/nature16489) PubMed DOI
Grime J. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169-1194. (10.1086/283244) DOI
Villa Martin P, Hidalgo J, Rubio de Casas R, Muñoz MA. 2016. Eco-evolutionary model of rapid phenotypic diversification in species-rich communities. PLoS Comput. Biol. 12, e1005139. (10.1371/journal.pcbi.1005139) PubMed DOI PMC
Falster DS, Brännström Å, Westoby M, Dieckmann U. 2017. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl Acad. Sci. USA 114, E2719-E2728. (10.1073/pnas.1610206114) PubMed DOI PMC
Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA. 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423-431.
Wright IJ, et al. 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. (10.1038/nature02403) PubMed DOI
Westoby M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213-227. (10.1023/A:1004327224729) DOI
de Bello F, et al. 2021. Functional trait effects on ecosystem stability: assembling the jigsaw puzzle. Trends Ecol. Evol. 36, 822-836. (10.1016/j.tree.2021.05.001) PubMed DOI
Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301. (10.1111/1365-2745.12211) DOI
Grime JP. 2001. Plant strategies. Vegetation processes, and ecosystem properties. New York, NY: John Wiley and sons.
Kraft NJB, Crutsinger GM, Forrestel EJ, Emery NC. 2014. Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos 123, 1391-1399. (10.1111/oik.01311) DOI
Laughlin DC. 2014. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186-193. (10.1111/1365-2745.12187) DOI
Adler PB, HilleRisLambers J, Kyriakidis PC, Guan Q, Levine JM. 2006. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12 793-12 798. (10.1073/pnas.0600599103) PubMed DOI PMC
Craven D, et al. 2018. Multiple facets of biodiversity drive the diversity – stability relationship. Nat. Ecol. Evol. 2, 1579-1587. (10.1038/s41559-018-0647-7) PubMed DOI
Polley HW, Isbell FI, Wilsey BJ. 2013. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos 122, 1275-1282. (10.1111/j.1600-0706.2013.00338.x) DOI
Chollet S, Rambal S, Fayolle A, Hubert D, Foulquié D, Garnier E. 2014. Combined effects of climate, resource availability, and plant traits on biomass produced in a Mediterranean rangeland. Ecology 95, 737-748. (10.1890/13-0751.1) PubMed DOI
Sperandii MG, et al. 2022. LOTVS: a global collection of permanent vegetation plots. J. Veg. Sci. 33, e13115. (10.1111/jvs.13115) DOI
Valencia E, et al. 2020a. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24 345-24 351. (10.1073/pnas.1920405117) PubMed DOI PMC
Valencia E, et al. 2020b. Directional trends in species composition over time can lead to a widespread overemphasis of year-to-year asynchrony. J. Veg. Sci. 31, 792-802.
Kattge J, et al. 2020. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119-188. (10.1111/gcb.14904) PubMed DOI
Garnier E, et al. 2017. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298-309. (10.1111/1365-2745.12698) DOI
Cayuela L, Stein A, Oksanen J. 2017. Taxonstand: taxonomic standardization of plant species names. R package version 2.0. R Foundation for Statistical Computing. See https://CRAN.R-project.org/package=Taxonstand.
Bates D, Mächler M, Bolker B, Walker S. 2014. Fitting linear mixed-effects models using lme4. R package version 1.1. R Foundation for Statistical Computing. See https://CRAN.R-project.org/package=lme4.
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133-142. (10.1111/j.2041-210x.2012.00261.x) DOI
Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. (10.1098/rsif.2017.0213) PubMed DOI PMC
de Bello F, Šmilauer P, Diniz-Filho JAF, Carmona CP, Lososová Z, Herben T, Götzenberger L. 2017. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200-1211. (10.1111/2041-210X.12735) DOI
Turnbull LA, Rees M, Crawley MJ. 1999. Seed mass and the competition/colonization trade-off: a sowing experiment. J. Ecol. 87, 899-912. (10.1046/j.1365-2745.1999.00405.x) DOI
Pistón N, de Bello F, Dias AT, Götzenberger L, Rosado BH, de Mattos EA, Salguero-Gómez R, Carmona CP. 2019. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317-2328. (10.1111/1365-2745.13190) DOI
Kazakou E, Vile D, Shipley B, Gallet C, Garnier E. 2006. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21-30. (10.1111/j.1365-2435.2006.01080.x) DOI
Smart SM, et al. 2017. Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area. Funct. Ecol. 31, 1336-1344. (10.1111/1365-2435.12832) DOI
Thompson K, Band SR, Hodgson JG. 1993. Seed size and shape predict persistence in soil. Funct. Ecol. 7, 236. (10.2307/2389893) DOI
Moles AT, Westoby M. 2006. Seed size and plant strategy across the whole life cycle. Oikos 113, 91-105. (10.1111/j.0030-1299.2006.14194.x) DOI
Venable DL, Brown JS. 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131, 360-384. (10.1086/284795) DOI
Pake CE, Venable DL. 1995. Is coexistence of Sonoran desert annuals mediated by temporal variability reproductive success? Ecology 76, 246-261. (10.2307/1940646) DOI
Lepš J. 2004. Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. Oikos 107, 64-71. (10.1111/j.0030-1299.2004.13023.x) DOI
Conti L et al. 2023. Functional traits trade-offs define plant population stability worldwide [Data set]. Zenodo. (10.5281/zenodo.7978254) PubMed DOI PMC
Conti L et al. 2023. Functional trait trade-offs define plant population stability across different biomes. Figshare. (10.6084/m9.figshare.c.6688799) PubMed DOI PMC
Functional trait trade-offs define plant population stability across different biomes
figshare
10.6084/m9.figshare.c.6688799