Nutritional Provision of Iron Complexes by the Major Allergen Alt a 1 to Human Immune Cells Decreases Its Presentation
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
8
Danube Allergy Research Cluster -DARC
PubMed
37569310
PubMed Central
PMC10418924
DOI
10.3390/ijms241511934
PII: ijms241511934
Knihovny.cz E-resources
- Keywords
- enzymatic, holo–Alt a 1, immune response, iron, major allergen Alt a 1, nutritional immunity, quercetin,
- MeSH
- Allergens * MeSH
- Alternaria metabolism MeSH
- Asthma * MeSH
- Caseins MeSH
- Clathrin MeSH
- Humans MeSH
- Quercetin MeSH
- Iron metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Allergens * MeSH
- Caseins MeSH
- Clathrin MeSH
- Quercetin MeSH
- Iron MeSH
Alternaria alternata is a common fungus strongly related with severe allergic asthma, with 80% of affected individuals being sensitized solely to its major allergen Alt a 1. Here, we assessed the function of Alt a 1 as an innate defense protein binding to micronutrients, such as iron-quercetin complexes (FeQ2), and its impact on antigen presentation in vitro. Binding of Alt a 1 to FeQ2 was determined in docking calculations. Recombinant Alt a 1 was generated, and binding ability, as well as secondary and quaternary structure, assessed by UV-VIS, CD, and DLS spectroscopy. Proteolytic functions were determined by casein and gelatine zymography. Uptake of empty apo- or ligand-filled holoAlt a 1 were assessed in human monocytic THP1 cells under the presence of dynamin and clathrin-inhibitors, activation of the Arylhydrocarbon receptor (AhR) using the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for phenotypic changes in monocytes by flow cytometry. Alt a 1 bound strongly to FeQ2 as a tetramer with calculated Kd values reaching pico-molar levels and surpassing affinities to quercetin alone by a factor of 5000 for the tetramer. apoAlt a 1 but not holoAlta 1 showed low enzymatic activity against casein as a hexamer and gelatin as a trimer. Uptake of apo- and holo-Alt a 1 occurred partly clathrin-dependent, with apoAlt a 1 decreasing labile iron in THP1 cells and holoAlt a 1 facilitating quercetin-dependent AhR activation. In human PBMCs uptake of holoAlt a 1 but not apoAlt a 1 significantly decreased the surface expression of the costimulatory CD86, but also of HLADR, thereby reducing effective antigen presentation. We show here for the first time that the presence of nutritional iron complexes, such as FeQ2, significantly alters the function of Alt a 1 and dampens the human immune response, thereby supporting the notion that Alt a 1 only becomes immunogenic under nutritional deprivation.
Comparative Medicine The Interuniversity Messerli Research Institute 1210 Vienna Austria
Department of Biosciences University of Salzburg 5020 Salzburg Austria
See more in PubMed
Lindblom S.D., Wangeline A.L., Barillas J.R.V., Devilbiss B., Fakra S.C., Pilon-Smits E.A.H. Fungal Endophyte Alternaria tenuissima Can Affect Growth and Selenium Accumulation in Its Hyperaccumulator Host Astragalus bisulcatus. Front. Plant Sci. 2018;9:1213. doi: 10.3389/fpls.2018.01213. PubMed DOI PMC
DeMers M. Alternaria alternata as endophyte and pathogen. Microbiology. 2022;168 doi: 10.1099/mic.0.001153. PubMed DOI PMC
Kumari V.V., Banerjee P., Verma V.C., Sukumaran S., Chandran M.A.S., Gopinath K.A., Venkatesh G., Yadav S.K., Singh V.K., Awasthi N.K. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int. J. Mol. Sci. 2022;23:8519. doi: 10.3390/ijms23158519. PubMed DOI PMC
Vicki A.M., Daniel J.W. Alternaria: A Sinonasal Pathogen of Immunocompromised Hosts. Clin. Infect. Dis. 1993;16:265–270. PubMed
Yu H. Studies on fungi of the normal skin. Hifuka kiyo. Acta Dermatol. 1965;60:126–174. PubMed
Pastor F.J., Guarro J. Alternaria infections: Laboratory diagnosis and relevant clinical features. Clin. Microbiol. Infect. 2008;14:734–746. doi: 10.1111/j.1469-0691.2008.02024.x. PubMed DOI
Nema H.V., Ahuja O.P., Bal A., Mohapatra L.N. Mycotic Flora of the Conjunctiva. Am. J. Ophthalmol. 1966;62:968–970. doi: 10.1016/0002-9394(66)91928-3. PubMed DOI
Lo Porto D., Cona A., Todaro F., De Carolis E., Cardinale F., Hafeez N., Di Martino G., Conaldi P.G., Sanguinetti M., Grossi P.A., et al. Phaeohyphomycosis in Solid Organ Transplant Recipients: A Case Series and Narrative Review of the Literature. J. Fungi. 2023;9:283. doi: 10.3390/jof9030283. PubMed DOI PMC
Lee J.Y., Hyun M., Kim H.A., Ryu S.Y. Unusual Presentation of Subcutaneous Phaeohyphomycosis by Alternaria alternate. Ann. Dermatol. 2019;31:563–566. doi: 10.5021/ad.2019.31.5.563. PubMed DOI PMC
Hattab Z., Ben Lasfar N., Abid M., Bellazreg F., Fathallah A., Hachfi W., Letaief A. Alternaria alternata infection causing rhinosinusitis and orbital involvement in an immunocompetent patient. New Microbes New Infect. 2019;32:100561. doi: 10.1016/j.nmni.2019.100561. PubMed DOI PMC
Sanchez P., Velez-Del-Burgo A., Sunen E., Martinez J., Postigo I. Fungal Allergen and Mold Allergy Diagnosis: Role and Relevance of Alternaria alternata Alt a 1 Protein Family. J. Fungi. 2022;8:277. doi: 10.3390/jof8030277. PubMed DOI PMC
Kespohl S., Raulf M. Mold Sensitization in Asthmatic and Non-asthmatic Subjects Diagnosed with Extract-Based Versus Component-Based Allergens. Adv. Exp. Med. Biol. 2019;1153:79–89. doi: 10.1007/5584_2019_342. PubMed DOI
Chruszcz M., Chapman M.D., Osinski T., Solberg R., Demas M., Porebski P.J., Majorek K.A., Pomes A., Minor W. Alternaria alternata allergen Alt a 1: A unique beta-barrel protein dimer found exclusively in fungi. J. Allergy Clin. Immunol. 2012;130:241–247.e249. doi: 10.1016/j.jaci.2012.03.047. PubMed DOI PMC
Garrido-Arandia M., Silva-Navas J., Ramirez-Castillejo C., Cubells-Baeza N., Gomez-Casado C., Barber D., Pozo J.C., Melendi P.G., Pacios L.F., Diaz-Perales A. Characterisation of a flavonoid ligand of the fungal protein Alt a 1. Sci. Rep. 2016;6:33468. doi: 10.1038/srep33468. PubMed DOI PMC
Mechaly A.E., Ibanez de Opakua A., Asturia J., Viguera A.R. Crystal Structure of Alternaria alternata Major Allergen Alt a 1. [(accessed on 21 November 2021)]. Available online: https://www.wwpdb.org/pdb?id=pdb_00004aud.
Garrido-Arandia M., Bretones J., Gomez-Casado C., Cubells N., Diaz-Perales A., Pacios L.F. Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold. J. Comput. Aided Mol. Des. 2016;30:365–379. doi: 10.1007/s10822-016-9911-6. PubMed DOI
Regner A., Szepannek N., Wiederstein M., Fakhimahmadi A., Paciosis L.F., Blokhuis B.R., Redegeld F.A., Hofstetter G., Dvorak Z., Jensen-Jarolim E., et al. Binding to Iron Quercetin Complexes Increases the Antioxidant Capacity of the Major Birch Pollen Allergen Bet v 1 and Reduces Its Allergenicity. Antioxidants. 2022;12:42. doi: 10.3390/antiox12010042. PubMed DOI PMC
Afify S.M., Regner A., Pacios L.F., Blokhuis B.R., Jensen S.A., Redegeld F.A., Pali-Scholl I., Hufnagl K., Bianchini R., Guethoff S., et al. Micronutritional supplementation with a holoBLG-based FSMP (food for special medical purposes)-lozenge alleviates allergic symptoms in BALB/c mice: Imitating the protective farm effect. Clin. Exp. Allergy. 2021;52:426–441. doi: 10.1111/cea.14050. PubMed DOI
Afify S.M., Pali-Scholl I., Hufnagl K., Hofstetter G., El-Bassuoni M.A.-R., Roth-Walter F., Jensen-Jarolim E. Bovine Holo-Beta-Lactoglobulin Cross-Protects Against Pollen Allergies in an Innate Manner in BALB/c Mice: Potential Model for the Farm Effect. Front. Immunol. 2021;12:176. doi: 10.3389/fimmu.2021.611474. PubMed DOI PMC
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. Front. Allergy. 2022;3:859922. doi: 10.3389/falgy.2022.859922. PubMed DOI PMC
Roth-Walter F., Afify S.M., Pacios L.F., Blokhuis B.R., Redegeld F., Regner A., Petje L.M., Fiocchi A., Untersmayr E., Dvorak Z., et al. Cow’s milk protein beta-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J. Allergy Clin. Immunol. 2021;147:321–334.e324. doi: 10.1016/j.jaci.2020.05.023. PubMed DOI
Roth-Walter F., Pacios L.F., Gomez-Casado C., Hofstetter G., Roth G.A., Singer J., Diaz-Perales A., Jensen-Jarolim E. The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron. PLoS ONE. 2014;9:e104803. doi: 10.1371/journal.pone.0104803. PubMed DOI PMC
Luscher A., Gasser V., Bumann D., Mislin G.L.A., Schalk I.J., Kohler T. Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates. mBio. 2022;13:e0149822. doi: 10.1128/mbio.01498-22. PubMed DOI PMC
Raza A., Xu X., Xia L., Xia C., Tang J., Ouyang Z. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies. J. Fluoresc. 2016;26:2023–2031. doi: 10.1007/s10895-016-1896-y. PubMed DOI
Symonowicz M., Sykula-Zajac A., Lodyga-Chruscinska E., Rumora I., Straukas M. Evaluation of polyphenols and anthocyanins contents in black chockeberry—Photinia melanocarpa (Michx.) fruits extract. Acta Pol. Pharm. 2012;69:381–387. PubMed
El Hajji H., Nkhili E., Tomao V., Dangles O. Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radic. Res. 2006;40:303–320. doi: 10.1080/10715760500484351. PubMed DOI
Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x. PubMed DOI
Raymond K.N., Dertz E.A., Kim S.S. Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA. 2003;100:3584–3588. doi: 10.1073/pnas.0630018100. PubMed DOI PMC
Xiao L., Luo G., Tang Y., Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem. Toxicol. 2018;114:190–203. doi: 10.1016/j.fct.2018.02.022. PubMed DOI
Wang X., Li Y., Han L., Li J., Liu C., Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front. Cell Dev. Biol. 2021;9:685364. doi: 10.3389/fcell.2021.685364. PubMed DOI PMC
Yin M., Liu Y., Chen Y. Iron metabolism: An emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic. Res. 2021;55:296–303. doi: 10.1080/10715762.2021.1898604. PubMed DOI
Lesjak M., Hoque R., Balesaria S., Skinner V., Debnam E.S., Srai S.K., Sharp P.A. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro. PLoS ONE. 2014;9:e102900. doi: 10.1371/journal.pone.0102900. PubMed DOI PMC
Bardestani A., Ebrahimpour S., Esmaeili A., Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J. Nanobiotechnol. 2021;19:327. doi: 10.1186/s12951-021-01059-0. PubMed DOI PMC
Sajadi Hezaveh Z., Azarkeivan A., Janani L., Hosseini S., Shidfar F. The effect of quercetin on iron overload and inflammation in beta-thalassemia major patients: A double-blind randomized clinical trial. Complement. Ther. Med. 2019;46:24–28. doi: 10.1016/j.ctim.2019.02.017. PubMed DOI
Roth-Walter F., Gomez-Casado C., Jensen-Jarolim E., Diaz Perales A., Pacios L.F., Singer J. Method and Means for Diagnosing and Treating Allergy Using Lipocalin Levels. U.S. Patent No. 10,914,744. 2015 January 7;
Roth-Walter F., Gomez-Casado C., Pacios L.F., Mothes-Luksch N., Roth G.A., Singer J., Diaz-Perales A., Jensen-Jarolim E. Bet v 1 from birch pollen is a lipocalin-like protein acting as allergen only when devoid of iron by promoting Th2 lymphocytes. J. Biol. Chem. 2014;289:17416–17421. doi: 10.1074/jbc.M114.567875. PubMed DOI PMC
Roth-Walter F., Schmutz R., Mothes-Luksch N., Lemell P., Zieglmayer P., Zieglmayer R., Jensen-Jarolim E. Clinical efficacy of sublingual immunotherapy is associated with restoration of steady-state serum lipocalin 2 after SLIT: A pilot study. World Allergy Organ. J. 2018;11:21. doi: 10.1186/s40413-018-0201-8. PubMed DOI PMC
Stetefeld J., McKenna S.A., Patel T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016;8:409–427. doi: 10.1007/s12551-016-0218-6. PubMed DOI PMC
Tenopoulou M., Kurz T., Doulias P.T., Galaris D., Brunk U.T. Does the calcein-AM method assay the total cellular ‘labile iron pool’ or only a fraction of it? Biochem. J. 2007;403:261–266. doi: 10.1042/BJ20061840. PubMed DOI PMC
Novotna A., Pavek P., Dvorak Z. Novel Stably Transfected Gene Reporter Human Hepatoma Cell Line for Assessment of Aryl Hydrocarbon Receptor Transcriptional Activity: Construction and Characterization. Environ. Sci. Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI
Elkhatib N., Porshneva K., Montagnac G. Migration cues interpretation by clathrin-coated structures. Curr. Opin. Cell Biol. 2021;72:100–105. doi: 10.1016/j.ceb.2021.07.005. PubMed DOI
Wardlaw A.J., Rick E.M., Pur Ozyigit L., Scadding A., Gaillard E.A., Pashley C.H. New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. J. Asthma Allergy. 2021;14:557–573. doi: 10.2147/JAA.S251709. PubMed DOI PMC
Diaz P.I., Hong B.-Y., Dupuy A.K., Strausbaugh L.D. Mining the oral mycobiome: Methods, components, and meaning. Virulence. 2017;8:313–323. doi: 10.1080/21505594.2016.1252015. PubMed DOI PMC
Santus W., Devlin J.R., Behnsen J. Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease. Infect. Immun. 2021;89:1110–1128. doi: 10.1128/IAI.00648-20. PubMed DOI PMC
Gallelli B., Viviani M., Nebuloni M., Marzano A.V., Pozzi C., Messa P., Fogazzi G.B. Skin infection due to Alternaria species in kidney allograft recipients: Report of a new case and review of the literature. J. Nephrol. 2006;19:668–672. PubMed
Vermeire S.E., de Jonge H., Lagrou K., Kuypers D.R. Cutaneous phaeohyphomycosis in renal allograft recipients: Report of 2 cases and review of the literature. Diagn. Microbiol. Infect. Dis. 2010;68:177–180. doi: 10.1016/j.diagmicrobio.2010.06.002. PubMed DOI
Chen Z., Jiang Y., Wang D., Zheng M., Liu X., Yuan C. Enhancement in serum (1-3)-beta-D-glucan level by cutaneous alternariosis: A case report and literature review. Microb. Pathog. 2021;150:104703. doi: 10.1016/j.micpath.2020.104703. PubMed DOI
Gabriel M.F., Postigo I., Tomaz C.T., Martinez J. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environ. Int. 2016;89–90:71–80. doi: 10.1016/j.envint.2016.01.003. PubMed DOI
Vailes L.D., Perzanowski M.S., Wheatley L.M., Platts-Mills T.A., Chapman M.D. IgE and IgG antibody responses to recombinant Alt a 1 as a marker of sensitization to Alternaria in asthma and atopic dermatitis. Clin. Exp. Allergy. 2001;31:1891–1895. doi: 10.1046/j.1365-2222.2001.00745.x. PubMed DOI
Lopes L., Borges-Costa J., Soares-Almeida L., Filipe P., Neves F., Santana A., Guerra J., Kutzner H. Cutaneous Alternariosis Caused by Alternaria infectoria: Three Cases in Kidney Transplant Patients. Healthcare. 2013;1:100–106. doi: 10.3390/healthcare1010100. PubMed DOI PMC
Kejik Z., Kaplanek R., Masarik M., Babula P., Matkowski A., Filipensky P., Vesela K., Gburek J., Sykora D., Martasek P., et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021;22:646. doi: 10.3390/ijms22020646. PubMed DOI PMC
Chobot V., Hadacek F. Iron and its complexation by phenolic cellular metabolites: From oxidative stress to chemical weapons. Plant Signal. Behav. 2010;5:4–8. doi: 10.4161/psb.5.1.10197. PubMed DOI PMC
von Loetzen C.S., Hoffmann T., Hartl M.J., Schweimer K., Schwab W., Rosch P., Hartl-Spiegelhauer O. Secret of the major birch pollen allergen Bet v 1: Identification of the physiological ligand. Biochem. J. 2014;457:379–390. doi: 10.1042/BJ20130413. PubMed DOI
Jacob T., von Loetzen C.S., Reuter A., Lacher U., Schiller D., Schobert R., Mahler V., Vieths S., Rosch P., Schweimer K., et al. Identification of a natural ligand of the hazel allergen Cor a 1. Sci. Rep. 2019;9:8714. doi: 10.1038/s41598-019-44999-2. PubMed DOI PMC
Casanal A., Zander U., Dupeux F., Valpuesta V., Marquez J.A. Purification, crystallization and preliminary X-ray analysis of the strawberry allergens Fra a 1E and Fra a 3 in the presence of catechin. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013;69:510–514. doi: 10.1107/S1744309113006945. PubMed DOI PMC
Vesic J., Stambolic I., Apostolovic D., Milcic M., Stanic-Vucinic D., Cirkovic Velickovic T. Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut. Food Chem. 2015;185:309–317. doi: 10.1016/j.foodchem.2015.04.001. PubMed DOI
Structure of PR 10 Allergen Ara h 8.01 with Quercetin. RCSB PDB. 2022. [(accessed on 19 January 2022)]. Available online: https://www.rcsb.org/structure/6B1D.
Hurlburt B.K., Offermann L.R., McBride J.K., Majorek K.A., Maleki S.J., Chruszcz M. Structure and function of the peanut panallergen Ara h 8. J. Biol. Chem. 2013;288:36890–36901. doi: 10.1074/jbc.M113.517797. PubMed DOI PMC
van Boxtel E.L., van den Broek L.A., Koppelman S.J., Vincken J.P., Gruppen H. Peanut allergen Ara h 1 interacts with proanthocyanidins into higher molecular weight complexes. J. Agric. Food Chem. 2007;55:8772–8778. doi: 10.1021/jf071585k. PubMed DOI
Ohradanova-Repic A., Prazenicova R., Gebetsberger L., Moskalets T., Skrabana R., Cehlar O., Tajti G., Stockinger H., Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics. 2023;15:1056. doi: 10.3390/pharmaceutics15041056. PubMed DOI PMC
Li G., Wei Y., Ma L., Mao Y., Xun R., Deng Y. A novel highly sensitive soy aptasensor for antigen beta-conglycinin determination. Anal. Methods. 2021;13:3059–3067. doi: 10.1039/D1AY00701G. PubMed DOI
Chinnappan R., Rahamn A.A., AlZabn R., Kamath S., Lopata A.L., Abu-Salah K.M., Zourob M. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chem. 2020;314:126133. doi: 10.1016/j.foodchem.2019.126133. PubMed DOI
Tipu H.N., Ahmed D., Gardezi S.A.H. In silico identification of epitopes from house cat and dog proteins as peptide immunotherapy candidates based on human leukocyte antigen binding affinity. Iran J. Vet. Res. 2017;18:56–59. PubMed PMC
Wang X., Qiao O., Han L., Li N., Gong Y. A Novel Rabbit Anti-Myoglobin Monoclonal Antibody’s Potential Application in Rhabdomyolysis Associated Acute Kidney Injury. Int. J. Mol. Sci. 2023;24:7822. doi: 10.3390/ijms24097822. PubMed DOI PMC
Tang H., Fayomi A.P., Bai S., Gupta N., Cascio S., Yang D., Buckanovich R.J. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol. Oncol. 2023;171:49–58. doi: 10.1016/j.ygyno.2023.02.004. PubMed DOI PMC
Joyce A., Shea C., You Z., Gorovits B., Lepsy C. Determination of Anti-drug Antibody Affinity in Clinical Study Samples Provides a Tool for Evaluation of Immune Response Maturation. AAPS J. 2022;24:114. doi: 10.1208/s12248-022-00759-1. PubMed DOI PMC
Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Shahinozzaman M., Ishii T., Ahmed S., Halim M.A., Tawata S. A computational approach to explore and identify potential herbal inhibitors for the p21-activated kinase 1 (PAK1) J. Biomol. Struct. Dyn. 2020;38:3514–3526. doi: 10.1080/07391102.2019.1659855. PubMed DOI
Wang W., Liu R., Zhu Y., Wang L., Tang Y., Dou B., Tian S., Wang F. YuNu-Jian attenuates diabetes-induced cardiomyopathy: Integrating network pharmacology and experimental validation. Front. Endocrinol. 2023;14:1195149. doi: 10.3389/fendo.2023.1195149. PubMed DOI PMC
Kizhakedathil M.P.J., Madasu P.K., Chandran T., Vijaykumar S.D. In-silico structural studies on anti-inflammatory activity of phytocompounds from the genus Andrographis. J. Biomol. Struct. Dyn. 2023:1–13. doi: 10.1080/07391102.2023.2234486. PubMed DOI
Almansour N.M., Allemailem K.S., Abd El Aty A.A., Ismail E.I.F., Ibrahim M.A.A. In Silico Mining of Natural Products Atlas (NPAtlas) Database for Identifying Effective Bcl-2 Inhibitors: Molecular Docking, Molecular Dynamics, and Pharmacokinetics Characteristics. Molecules. 2023;28:783. doi: 10.3390/molecules28020783. PubMed DOI PMC
Xia J., Hu H., Xue W., Wang X.S., Wu S. The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. J. Enzyme Inhib. Med. Chem. 2018;33:525–535. doi: 10.1080/14756366.2018.1437156. PubMed DOI PMC
Zeng L., Shin W.H., Zhu X., Park S.H., Park C., Tao W.A., Kihara D. Discovery of Nicotinamide Adenine Dinucleotide Binding Proteins in the Escherichia coli Proteome Using a Combined Energetic- and Structural-Bioinformatics-Based Approach. J. Proteome Res. 2017;16:470–480. doi: 10.1021/acs.jproteome.6b00624. PubMed DOI PMC
Tanchuk V.Y., Tanin V.O., Vovk A.I., Poda G. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina. Chem. Biol. Drug Des. 2016;87:618–625. doi: 10.1111/cbdd.12697. PubMed DOI
Zhang Y., Gao Y., Liang Y., Dong Y., Yang X., Qiu D. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection. J. Exp. Bot. 2019;70:613–626. doi: 10.1093/jxb/ery351. PubMed DOI PMC
Saenz-de-Santamaria M., Guisantes J.A., Martinez J. Enzymatic activities of Alternaria alternata allergenic extracts and its major allergen (Alt a 1) Mycoses. 2006;49:288–292. doi: 10.1111/j.1439-0507.2006.01238.x. PubMed DOI
Garrido-Arandia M., Tome-Amat J., Pazos-Castro D., Esteban V., Escribese M.M., Hernandez-Ramirez G., Yuste-Montalvo A., Barber D., Pacios L.F., Diaz-Perales A. Interaction of Alt a 1 with SLC22A17 in the airway mucosa. Allergy. 2019;74:2167–2180. doi: 10.1111/all.13877. PubMed DOI
Hayes T., Rumore A., Howard B., He X., Luo M., Wuenschmann S., Chapman M., Kale S., Li L., Kita H., et al. Innate Immunity Induced by the Major Allergen Alt a 1 From the Fungus Alternaria Is Dependent Upon Toll-like Receptors 2/4 in Human Lung Epithelial Cells. Front. Immunol. 2018;9:1507. doi: 10.3389/fimmu.2018.01507. PubMed DOI PMC
Lin L., Dai Y., Xia Y. An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur. J. Med. Chem. 2022;244:114845. doi: 10.1016/j.ejmech.2022.114845. PubMed DOI
Koch S., Stroisch T.J., Vorac J., Herrmann N., Leib N., Schnautz S., Kirins H., Forster I., Weighardt H., Bieber T. AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcepsilonRI and IDO. Allergy. 2017;72:1686–1693. doi: 10.1111/all.13170. PubMed DOI
Aguilera-Montilla N., Chamorro S., Nieto C., Sanchez-Cabo F., Dopazo A., Fernandez-Salguero P.M., Rodriguez-Fernandez J.L., Pello O.M., Andres V., Cuenda A., et al. Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood. 2013;121:e108–e117. doi: 10.1182/blood-2012-07-445106. PubMed DOI
Maazi H., Shirinbak S., Bloksma N., Nawijn M.C., van Oosterhout A.J. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clin. Exp. Immunol. 2011;166:80–86. doi: 10.1111/j.1365-2249.2011.04448.x. PubMed DOI PMC
Leung S., Holbrook A., King B., Lu H.T., Evans V., Miyamoto N., Mallari C., Harvey S., Davey D., Ho E., et al. Differential inhibition of inducible T cell cytokine secretion by potent iron chelators. J. Biomol. Screen. 2005;10:157–167. doi: 10.1177/1087057104272295. PubMed DOI
Jason J., Archibald L.K., Nwanyanwu O.C., Bell M., Jensen R.J., Gunter E., Buchanan I., Larned J., Kazembe P.N., Dobbie H., et al. The effects of iron deficiency on lymphocyte cytokine production and activation: Preservation of hepatic iron but not at all cost. Clin. Exp. Immunol. 2001;126:466–473. doi: 10.1046/j.1365-2249.2001.01707.x. PubMed DOI PMC
Thorson J.A., Smith K.M., Gomez F., Naumann P.W., Kemp J.D. Role of iron in T cell activation: TH1 clones differ from TH2 clones in their sensitivity to inhibition of DNA synthesis caused by IgG Mabs against the transferrin receptor and the iron chelator deferoxamine. Cell Immunol. 1991;134:126–137. doi: 10.1016/0008-8749(91)90336-A. PubMed DOI
Drury K.E., Schaeffer M., Silverberg J.I. Association between Atopic Disease and Anemia in US Children. JAMA Pediatr. 2016;170:29–34. doi: 10.1001/jamapediatrics.2015.3065. PubMed DOI
Rhew K., Brown J.D., Oh J.M. Atopic Disease and Anemia in Korean Patients: Cross-Sectional Study with Propensity Score Analysis. Int. J. Environ. Res. Public Health. 2020;17:1978. doi: 10.3390/ijerph17061978. PubMed DOI PMC
Rhew K., Oh J.M. Association between atopic disease and anemia in pediatrics: A cross-sectional study. BMC Pediatr. 2019;19:455. doi: 10.1186/s12887-019-1836-5. PubMed DOI PMC
Shaheen S.O., Gissler M., Devereux G., Erkkola M., Kinnunen T.I., McArdle H., Sheikh A., Hemminki E., Nwaru B.I. Maternal iron supplementation in pregnancy and asthma in the offspring: Follow-up of a randomised trial in Finland. Eur. Respir. J. 2020;55:1902335. doi: 10.1183/13993003.02335-2019. PubMed DOI
Shaheen S.O., Macdonald-Wallis C., Lawlor D.A., Henderson A.J. Haemoglobin concentrations in pregnancy and respiratory and allergic outcomes in childhood: Birth cohort study. Clin. Exp. Allergy. 2017;47:1615–1624. doi: 10.1111/cea.13034. PubMed DOI PMC
Shaheen S.O., Newson R.B., Henderson A.J., Emmett P.M., Sherriff A., Cooke M., Team A.S. Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur. Respir. J. 2004;24:292–297. doi: 10.1183/09031936.04.00117803. PubMed DOI
Nyakeriga A.M., Williams T.N., Marsh K., Wambua S., Perlmann H., Perlmann P., Grandien A., Troye-Blomberg M. Cytokine mRNA expression and iron status in children living in a malaria endemic area. Scand J. Immunol. 2005;61:370–375. doi: 10.1111/j.1365-3083.2005.01573.x. PubMed DOI
Ghatak S.K., Majumdar D., Singha A., Sen S., Das D., Chakrabarti A., Mukhopadhyay C., Sen K. Peanut protein sensitivity towards trace iron: A novel mode to ebb allergic response. Food Chem. 2015;176:308–313. doi: 10.1016/j.foodchem.2014.12.081. PubMed DOI
Tong P., Gao L., Gao J., Li X., Wu Z., Yang A., Chen H. Iron-induced chelation alleviates the potential allergenicity of ovotransferrin in a BALB/c mouse model. Nutr. Res. 2017;47:81–89. doi: 10.1016/j.nutres.2017.09.009. PubMed DOI
Word J.M., Lovell S.C., Richardson J.S., Richardson D.C. Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 1999;285:1735–1747. doi: 10.1006/jmbi.1998.2401. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Borrego J., Naseem M.U., Sehgal A.N.A., Panda L.R., Shakeel K., Gaspar A., Nagy C., Varga Z., Panyi G. Recombinant Expression in Pichia pastoris System of Three Potent Kv1.3 Channel Blockers: Vm24, Anuroctoxin, and Ts6. J. Fungi. 2022;8:1215. doi: 10.3390/jof8111215. PubMed DOI PMC
Hufnagl K., Afify S.M., Braun N., Wagner S., Wallner M., Hauser M., Wiederstein M., Gadermaier G., Wildner S., Redegeld F.A., et al. Retinoic acid-loading of the major birch pollen allergen Bet v 1 may improve specific allergen immunotherapy: In silico, in vitro and in vivo data in BALB/c mice. Allergy. 2020;75:2073–2077. doi: 10.1111/all.14259. PubMed DOI PMC
Roth-Walter F., Starkl P., Zuberbier T., Hummel K., Nobauer K., Razzazi-Fazeli E., Brunner R., Pali-Scholl I., Kinkel J., Felix F., et al. Glutathione exposes sequential IgE-epitopes in ovomucoid relevant in persistent egg allergy. Mol. Nutr. Food Res. 2013;57:536–544. doi: 10.1002/mnfr.201200612. PubMed DOI PMC
Oida K., Einhorn L., Herrmann I., Panakova L., Resch Y., Vrtala S., Hofstetter G., Tanaka A., Matsuda H., Jensen-Jarolim E. Innate function of house dust mite allergens: Robust enzymatic degradation of extracellular matrix at elevated pH. World Allergy Organ. J. 2017;10:23. doi: 10.1186/s40413-017-0154-3. PubMed DOI PMC