Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review

. 2024 Jun ; 274 (4) : 803-826. [epub] 20230908

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37682331

Grantová podpora
NU22-D-133 Ministerstvo Zdravotnictví Ceské Republiky
NU22-04-00192 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 37682331
PubMed Central PMC11127835
DOI 10.1007/s00406-023-01687-7
PII: 10.1007/s00406-023-01687-7
Knihovny.cz E-zdroje

Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.

Zobrazit více v PubMed

Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci. 2023;27:189–205. doi: 10.1016/j.tics.2022.11.013. PubMed DOI PMC

Liu A, Vöröslakos M, Kronberg G, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9:5092. doi: 10.1038/s41467-018-07233-7. PubMed DOI PMC

Alekseichuk I, Falchier AY, Linn G, et al. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun. 2019;10:2573. doi: 10.1038/s41467-019-10581-7. PubMed DOI PMC

Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci. 2021;271:135–156. doi: 10.1007/s00406-020-01209-9. PubMed DOI PMC

Buzzell GA, Barker TV, Troller-Renfree SV, et al. Adolescent cognitive control, theta oscillations, and social observation. Neuroimage. 2019;198:13–30. doi: 10.1016/j.neuroimage.2019.04.077. PubMed DOI PMC

Karakaş S. A review of theta oscillation and its functional correlates. Int J Psychophysiol Off J Int Organ Psychophysiol. 2020;157:82–99. doi: 10.1016/j.ijpsycho.2020.04.008. PubMed DOI

Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29:169–195. doi: 10.1016/s0165-0173(98)00056-3. PubMed DOI

Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol. 2018;52:182–187. doi: 10.1016/j.conb.2018.07.009. PubMed DOI PMC

Sadaghiani S, Kleinschmidt A. Brain networks and α-oscillations: structural and functional foundations of cognitive control. Trends Cogn Sci. 2016;20:805–817. doi: 10.1016/j.tics.2016.09.004. PubMed DOI

Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: gamma oscillations as units of neural circuit operations. Neuron. 2023;111:936–953. doi: 10.1016/j.neuron.2023.02.026. PubMed DOI PMC

Klink K, Paßmann S, Kasten FH, Peter J. The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects. Brain Sci. 2020;10:932. doi: 10.3390/brainsci10120932. PubMed DOI PMC

Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ Sci Learn. 2023;8:1. doi: 10.1038/s41539-022-00152-9. PubMed DOI PMC

Fusco G, Cristiano A, Perazzini A, Aglioti SM. Neuromodulating the performance monitoring network during conflict and error processing in healthy populations: Insights from transcranial electric stimulation studies. Front Integr Neurosci. 2022;16:953928. doi: 10.3389/fnint.2022.953928. PubMed DOI PMC

Nissim NR, McAfee DC, Edwards S, et al. Efficacy of transcranial alternating current stimulation in the enhancement of working memory performance in healthy adults: a systematic meta-analysis. Neuromodulation J Int Neuromodulation Soc. 2023;26:728–737. doi: 10.1016/j.neurom.2022.12.014. PubMed DOI PMC

Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: a systematic review. Cortex J Devoted Study Nerv Syst Behav. 2022;147:112–139. doi: 10.1016/j.cortex.2021.12.001. PubMed DOI

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC

Del Felice A, Castiglia L, Formaggio E, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. NeuroImage Clin. 2019;22:101768. doi: 10.1016/j.nicl.2019.101768. PubMed DOI PMC

Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson’s disease. Prog Brain Res. 2022;269:435–455. doi: 10.1016/bs.pbr.2022.01.016. PubMed DOI PMC

Goodwill AM, Lum JAG, Hendy AM, et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep. 2017;7:14840. doi: 10.1038/s41598-017-13260-z. PubMed DOI PMC

Bernardi L, Bertuccelli M, Formaggio E, et al. Beyond physiotherapy and pharmacological treatment for fibromyalgia syndrome: tailored tACS as a new therapeutic tool. Eur Arch Psychiatry Clin Neurosci. 2021;271:199–210. doi: 10.1007/s00406-020-01214-y. PubMed DOI PMC

Chang C-C, Huang CC-Y, Chung Y-A, et al. Online left-hemispheric in-phase frontoparietal theta tACS for the treatment of negative symptoms of schizophrenia. J Pers Med. 2021 doi: 10.3390/jpm11111114. PubMed DOI PMC

Mellin JM, Alagapan S, Lustenberger C, et al. Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur Psychiatry J Assoc Eur Psychiatr. 2018;51:25–33. doi: 10.1016/j.eurpsy.2018.01.004. PubMed DOI PMC

Hoy KE, Whitty D, Bailey N, Fitzgerald PB. Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia. J Neural Transm Vienna Austria. 2016;1996(123):1205–1212. doi: 10.1007/s00702-016-1554-1. PubMed DOI

Haller N, Hasan A, Padberg F, et al. Gamma transcranial alternating current stimulation for treatment of negative symptoms in schizophrenia: Report of two cases. Asian J Psychiatry. 2020;54:102423. doi: 10.1016/j.ajp.2020.102423. PubMed DOI

Haller N, Hasan A, Padberg F, et al. Gamma transcranial alternating current stimulation in patients with negative symptoms in schizophrenia: a case series. Neurophysiol Clin Clin Neurophysiol. 2020;50:301–304. doi: 10.1016/j.neucli.2020.06.004. PubMed DOI

Sreeraj VS, Shanbhag V, Nawani H, et al. Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J Psychol Med. 2017;39:92–95. doi: 10.4103/0253-7176.198937. PubMed DOI PMC

Sreeraj VS, Shivakumar V, Sowmya S, et al. Online theta frequency transcranial alternating current stimulation for cognitive remediation in schizophrenia: a case report and review of literature. J ECT. 2019;35:139–143. doi: 10.1097/YCT.0000000000000523. PubMed DOI

Zhou D, Li A, Li X, et al. Effects of 40 Hz transcranial alternating current stimulation (tACS) on cognitive functions of patients with Alzheimer’s disease: a randomised, double-blind, sham-controlled clinical trial. J Neurol Neurosurg Psychiatry. 2022;93:568–570. doi: 10.1136/jnnp-2021-326885. PubMed DOI

Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann Neurol. 2022;92:322–334. doi: 10.1002/ana.26411. PubMed DOI PMC

Mimura Y, Nishida H, Nakajima S, et al. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;121:47–59. doi: 10.1016/j.neubiorev.2020.12.003. PubMed DOI

Chaieb L, Antal A, Masurat F, Paulus W. Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Front Behav Neurosci. 2015;9:147. doi: 10.3389/fnbeh.2015.00147. PubMed DOI PMC

Di Lazzaro V, Oliviero A, Tonali PA, et al. Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology. 2002;59:392–397. doi: 10.1212/wnl.59.3.392. PubMed DOI

Benussi A, Grassi M, Palluzzi F, et al. Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias. Ann Neurol. 2020;87:394–404. doi: 10.1002/ana.25677. PubMed DOI

Benussi A, Cantoni V, Cotelli MS, et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimulat. 2021;14:531–540. doi: 10.1016/j.brs.2021.03.007. PubMed DOI

Naro A, Corallo F, De Salvo S, et al. Promising role of neuromodulation in predicting the progression of mild cognitive impairment to dementia. J Alzheimers Dis JAD. 2016;53:1375–1388. doi: 10.3233/JAD-160305. PubMed DOI

Moussavi Z, Kimura K, Kehler L, et al. A novel program to improve cognitive function in individuals with dementia using transcranial alternating current stimulation (tACS) and tutored cognitive exercises. Front Aging. 2021;2:632545. doi: 10.3389/fragi.2021.632545. PubMed DOI PMC

Sprugnoli G, Munsch F, Cappon D, et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer’s disease. Alzheimers Res Ther. 2021;13:203. doi: 10.1186/s13195-021-00922-4. PubMed DOI PMC

Bréchet L, Yu W, Biagi MC, et al. Patient-tailored, home-based non-invasive brain stimulation for memory deficits in dementia due to Alzheimer’s disease. Front Neurol. 2021;12:598135. doi: 10.3389/fneur.2021.598135. PubMed DOI PMC

Liu Y, Tang C, Wei K, et al. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer’s disease: a case report and literature review. Front Neurol. 2022;13:962684. doi: 10.3389/fneur.2022.962684. PubMed DOI PMC

Kim J, Kim H, Jeong H, et al. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J Psychiatr Res. 2021;141:248–256. doi: 10.1016/j.jpsychires.2021.07.012. PubMed DOI

Palm U, Baumgartner C, Hoffmann L, et al. Single session gamma transcranial alternating stimulation does not modulate working memory in depressed patients and healthy controls. Neurophysiol Clin Clin Neurophysiol. 2022;52:128–136. doi: 10.1016/j.neucli.2022.03.002. PubMed DOI

Alexander ML, Alagapan S, Lugo CE, et al. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD) Transl Psychiatry. 2019;9:106. doi: 10.1038/s41398-019-0439-0. PubMed DOI PMC

Haller N, Senner F, Brunoni AR, et al. Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J Psychiatr Res. 2020;130:31–34. doi: 10.1016/j.jpsychires.2020.07.009. PubMed DOI

Wilkening A, Kurzeck A, Dechantsreiter E, et al. Transcranial alternating current stimulation for the treatment of major depression during pregnancy. Psychiatry Res. 2019;279:399–400. doi: 10.1016/j.psychres.2019.06.009. PubMed DOI

Haller N, Senner F, Hasan A, et al. Gamma transcranial alternating current stimulation (γtACS) in obsessive-compulsive disorder: a case report. Fortschr Neurol Psychiatr. 2020;88:398–401. doi: 10.1055/a-1149-9216. PubMed DOI

Kannen K, Aslan B, Boetzel C, et al. P300 modulation via transcranial alternating current stimulation in adult attention-deficit/hyperactivity disorder: a crossover study. Front Psychiatry. 2022;13:928145. doi: 10.3389/fpsyt.2022.928145. PubMed DOI PMC

Dallmer-Zerbe I, Popp F, Lam AP, et al. Transcranial Alternating current stimulation (tACS) as a tool to modulate P300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr. 2020;33:191–207. doi: 10.1007/s10548-020-00752-x. PubMed DOI PMC

Amouzadeh F, Sheikh M. Impact of transcranial alternating current stimulation on working memory and selective attention in athletes with attention deficit hyperactivity disorder: randomized controlled trial. NeuroReport. 2022;33:756–762. doi: 10.1097/WNR.0000000000001842. PubMed DOI

Daughters SB, Yi JY, Phillips RD, et al. Alpha-tACS effect on inhibitory control and feasibility of administration in community outpatient substance use treatment. Drug Alcohol Depend. 2020;213:108132. doi: 10.1016/j.drugalcdep.2020.108132. PubMed DOI PMC

McKim TH, Dove SJ, Robinson DL, et al. Addiction history moderates the effect of prefrontal 10-Hz transcranial alternating current stimulation on habitual action selection. J Neurophysiol. 2021;125:768–780. doi: 10.1152/jn.00180.2020. PubMed DOI PMC

Sabel BA, Zhou W, Huber F, et al. Non-invasive brain microcurrent stimulation therapy of long-COVID-19 reduces vascular dysregulation and improves visual and cognitive impairment. Restor Neurol Neurosci. 2021;39:393–408. doi: 10.3233/RNN-211249. PubMed DOI PMC

Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898. PubMed DOI

Bora E, Yücel M, Pantelis C. Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophr Bull. 2010;36:36–42. doi: 10.1093/schbul/sbp094. PubMed DOI PMC

Gebreegziabhere Y, Habatmu K, Mihretu A, et al. Cognitive impairment in people with schizophrenia: an umbrella review. Eur Arch Psychiatry Clin Neurosci. 2022;272:1139–1155. doi: 10.1007/s00406-022-01416-6. PubMed DOI PMC

Sheffield JM, Barch DM. Cognition and resting-state functional connectivity in schizophrenia. Neurosci Biobehav Rev. 2016;61:108–120. doi: 10.1016/j.neubiorev.2015.12.007. PubMed DOI PMC

Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–113. doi: 10.1038/nrn2774. PubMed DOI

Chung DW, Geramita MA, Lewis DA. Synaptic variability and cortical gamma oscillation power in schizophrenia. Am J Psychiatry. 2022;179:277–287. doi: 10.1176/appi.ajp.2021.21080798. PubMed DOI PMC

Shin Y-W, O’Donnell BF, Youn S, Kwon JS. Gamma oscillation in schizophrenia. Psychiatry Investig. 2011;8:288–296. doi: 10.4306/pi.2011.8.4.288. PubMed DOI PMC

McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-an overview. JAMA Psychiat. 2020;77:201–210. doi: 10.1001/jamapsychiatry.2019.3360. PubMed DOI

Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiat. 2014;71:1323–1331. doi: 10.1001/jamapsychiatry.2014.1582. PubMed DOI PMC

Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2022;47:292–308. doi: 10.1038/s41386-021-01089-0. PubMed DOI PMC

Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67. doi: 10.1016/j.tins.2011.10.004. PubMed DOI PMC

Dienel SJ, Schoonover KE, Lewis DA. Cognitive dysfunction and prefrontal cortical circuit alterations in schizophrenia: developmental trajectories. Biol Psychiatry. 2022;92:450–459. doi: 10.1016/j.biopsych.2022.03.002. PubMed DOI PMC

Haenschel C, Bittner RA, Waltz J, et al. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci Off J Soc Neurosci. 2009;29:9481–9489. doi: 10.1523/JNEUROSCI.1428-09.2009. PubMed DOI PMC

Howard MW, Rizzuto DS, Caplan JB, et al. Gamma oscillations correlate with working memory load in humans. Cereb Cortex N Y N. 2003;13:1369–1374. doi: 10.1093/cercor/bhg084. PubMed DOI

Jensen O, Kaiser J, Lachaux J-P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–324. doi: 10.1016/j.tins.2007.05.001. PubMed DOI

Chen C-MA, Stanford AD, Mao X, et al. GABA level, gamma oscillation, and working memory performance in schizophrenia. NeuroImage Clin. 2014;4:531–539. doi: 10.1016/j.nicl.2014.03.007. PubMed DOI PMC

Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis. 2019;131:104208. doi: 10.1016/j.nbd.2018.06.020. PubMed DOI PMC

Christophel TB, Klink PC, Spitzer B, et al. The distributed nature of working memory. Trends Cogn Sci. 2017;21:111–124. doi: 10.1016/j.tics.2016.12.007. PubMed DOI

Ratcliffe O, Shapiro K, Staresina BP. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr Biol CB. 2022;32:2121–2129.e3. doi: 10.1016/j.cub.2022.03.045. PubMed DOI PMC

Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron. 2018;100:463–475. doi: 10.1016/j.neuron.2018.09.023. PubMed DOI PMC

Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci. 2014;18:16–25. doi: 10.1016/j.tics.2013.10.010. PubMed DOI

Hyafil A, Giraud A-L, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015;38:725–740. doi: 10.1016/j.tins.2015.09.001. PubMed DOI

Abubaker M, Al Qasem W, Kvašňák E. Working memory and cross-frequency coupling of neuronal oscillations. Front Psychol. 2021;12:756661. doi: 10.3389/fpsyg.2021.756661. PubMed DOI PMC

Lisman JE, Jensen O. The θ-γ neural code. Neuron. 2013;77:1002–1016. doi: 10.1016/j.neuron.2013.03.007. PubMed DOI PMC

Alekseichuk I, Turi Z, Amador de Lara G, et al. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol CB. 2016;26:1513–1521. doi: 10.1016/j.cub.2016.04.035. PubMed DOI

Barr MS, Rajji TK, Zomorrodi R, et al. Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophr Res. 2017;189:104–110. doi: 10.1016/j.schres.2017.01.044. PubMed DOI

Lee TH, Kim M, Hwang WJ, et al. Relationship between resting-state theta phase-gamma amplitude coupling and neurocognitive functioning in patients with first-episode psychosis. Schizophr Res. 2020;216:154–160. doi: 10.1016/j.schres.2019.12.010. PubMed DOI

APA (2013) Diagnostic and statistical manual of mental disorders. 5th edition. Washington, DC: American Psychiatric Association

Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am. 2019;103:263–293. doi: 10.1016/j.mcna.2018.10.009. PubMed DOI

Kirova A-M, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed Res Int. 2015;2015:748212. doi: 10.1155/2015/748212. PubMed DOI PMC

Jafari Z, Kolb BE, Mohajerani MH. Neural oscillations and brain stimulation in Alzheimer’s disease. Prog Neurobiol. 2020;194:101878. doi: 10.1016/j.pneurobio.2020.101878. PubMed DOI

Başar E, Emek-Savaş DD, Güntekin B, Yener GG. Delay of cognitive gamma responses in Alzheimer’s disease. NeuroImage Clin. 2016;11:106–115. doi: 10.1016/j.nicl.2016.01.015. PubMed DOI PMC

Başar E, Femir B, Emek-Savaş DD, et al. Increased long distance event-related gamma band connectivity in Alzheimer’s disease. NeuroImage Clin. 2017;14:580–590. doi: 10.1016/j.nicl.2017.02.021. PubMed DOI PMC

Goodman MS, Kumar S, Zomorrodi R, et al. Theta-gamma coupling and working memory in alzheimer’s dementia and mild cognitive impairment. Front Aging Neurosci. 2018;10:101. doi: 10.3389/fnagi.2018.00101. PubMed DOI PMC

Yener G, Hünerli-Gündüz D, Yıldırım E, et al. Treatment effects on event-related EEG potentials and oscillations in Alzheimer’s disease. Int J Psychophysiol Off J Int Organ Psychophysiol. 2022;177:179–201. doi: 10.1016/j.ijpsycho.2022.05.008. PubMed DOI

Casula EP, Pellicciari MC, Bonnì S, et al. Decreased frontal gamma activity in Alzheimer disease patients. Ann Neurol. 2022;92:464–475. doi: 10.1002/ana.26444. PubMed DOI PMC

Martorell AJ, Paulson AL, Suk H-J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell. 2019;177:256–271.e22. doi: 10.1016/j.cell.2019.02.014. PubMed DOI PMC

Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–235. doi: 10.1038/nature20587. PubMed DOI PMC

Dhaynaut M, Sprugnoli G, Cappon D, et al. Impact of 40 Hz transcranial alternating current stimulation on cerebral tau burden in patients with Alzheimer’s disease: a case series. J Alzheimers Dis JAD. 2022;85:1667–1676. doi: 10.3233/JAD-215072. PubMed DOI PMC

Adaikkan C, Tsai L-H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci. 2020;43:24–41. doi: 10.1016/j.tins.2019.11.001. PubMed DOI

Gaubert S, Raimondo F, Houot M, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain J Neurol. 2019;142:2096–2112. doi: 10.1093/brain/awz150. PubMed DOI

Menardi A, Rossi S, Koch G, et al. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res Rev. 2022;75:101555. doi: 10.1016/j.arr.2021.101555. PubMed DOI PMC

Pontecorvo MJ, Devous MD, Navitsky M, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain J Neurol. 2017;140:748–763. doi: 10.1093/brain/aww334. PubMed DOI PMC

Kumar S, Zomorrodi R, Ghazala Z, et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease. JAMA Psychiat. 2017;74:1266–1274. doi: 10.1001/jamapsychiatry.2017.3292. PubMed DOI PMC

Jongsiriyanyong S, Limpawattana P. Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Demen. 2018;33:500–507. doi: 10.1177/1533317518791401. PubMed DOI PMC

Petersen RC, Caracciolo B, Brayne C, et al. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275:214–228. doi: 10.1111/joim.12190. PubMed DOI PMC

Fraga FJ, Mamani GQ, Johns E, et al. Early diagnosis of mild cognitive impairment and Alzheimer’s with event-related potentials and event-related desynchronization in N-back working memory tasks. Comput Methods Programs Biomed. 2018;164:1–13. doi: 10.1016/j.cmpb.2018.06.011. PubMed DOI

Missonnier P, Deiber M-P, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience. 2007;150:346–356. doi: 10.1016/j.neuroscience.2007.09.009. PubMed DOI

Tülay EE, Güntekin B, Yener G, et al. Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s disease. Int J Psychophysiol Off J Int Organ Psychophysiol. 2020;155:41–48. doi: 10.1016/j.ijpsycho.2020.06.001. PubMed DOI

Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Primer. 2016;2:1–20. doi: 10.1038/nrdp.2016.65. PubMed DOI

Knight MJ, Baune BT. Cognitive dysfunction in major depressive disorder. Curr Opin Psychiatry. 2018;31:26–31. doi: 10.1097/YCO.0000000000000378. PubMed DOI

Pan Z, Park C, Brietzke E, et al. Cognitive impairment in major depressive disorder. CNS Spectr. 2019;24:22–29. doi: 10.1017/S1092852918001207. PubMed DOI

Strelets VB, Garakh ZV, Novototskii-Vlasov VY. Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode. Neurosci Behav Physiol. 2007;37:387–394. doi: 10.1007/s11055-007-0025-4. PubMed DOI

Maiella M, Casula EP, Borghi I, et al. Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex. Sci Rep. 2022;12:19391. doi: 10.1038/s41598-022-23040-z. PubMed DOI PMC

Koo PC, Berger C, Kronenberg G, et al. Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2019;269:823–832. doi: 10.1007/s00406-018-0952-9. PubMed DOI

Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat. 2015;72:603–611. doi: 10.1001/jamapsychiatry.2015.0071. PubMed DOI PMC

Abramovitch A, Cooperman A. The cognitive neuropsychology of obsessive-compulsive disorder: a critical review. J Obsessive-Compuls Relat Disord. 2015;5:24–36. doi: 10.1016/j.jocrd.2015.01.002. DOI

Funch Uhre V, Melissa Larsen K, Marc Herz D, et al. Inhibitory control in obsessive compulsive disorder: a systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. NeuroImage Clin. 2022;36:103268. doi: 10.1016/j.nicl.2022.103268. PubMed DOI PMC

van Velzen LS, Vriend C, de Wit SJ, van den Heuvel OA. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Hum Neurosci. 2014 doi: 10.3389/fnhum.2014.00419. PubMed DOI PMC

Park JY, Lee J, Park H-J, et al. Alpha amplitude and phase locking in obsessive-compulsive disorder during working memory. Int J Psychophysiol Off J Int Organ Psychophysiol. 2012;83:1–7. doi: 10.1016/j.ijpsycho.2011.09.014. PubMed DOI

Ciesielski KT, Hämäläinen MS, Geller DA, et al. Dissociation between MEG alpha modulation and performance accuracy on visual working memory task in obsessive compulsive disorder. Hum Brain Mapp. 2007;28:1401–1414. doi: 10.1002/hbm.20365. PubMed DOI PMC

Treu S, Gonzalez-Rosa JJ, Soto-Leon V, et al. A ventromedial prefrontal dysrhythmia in obsessive-compulsive disorder is attenuated by nucleus accumbens deep brain stimulation. Brain Stimul Basic Transl Clin Res Neuromodulation. 2021;14:761–770. doi: 10.1016/j.brs.2021.04.028. PubMed DOI

Fuermaier ABM, Tucha L, Koerts J, et al. Cognitive impairment in adult ADHD–perspective matters! Neuropsychology. 2015;29:45–58. doi: 10.1037/neu0000108. PubMed DOI

Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2006;23:440–455. doi: 10.1097/01.wnp.0000221363.12503.78. PubMed DOI

Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord. 2013;17:374–383. doi: 10.1177/1087054712460087. PubMed DOI

Saad JF, Kohn MR, Clarke S, et al. Is the theta/beta eeg marker for ADHD inherently flawed? J Atten Disord. 2018;22:815–826. doi: 10.1177/1087054715578270. PubMed DOI

Kiiski H, Bennett M, Rueda-Delgado LM, et al. EEG spectral power, but not theta/beta ratio, is a neuromarker for adult ADHD. Eur J Neurosci. 2020;51:2095–2109. doi: 10.1111/ejn.14645. PubMed DOI

Picken C, Clarke AR, Barry RJ, et al. The theta/beta ratio as an index of cognitive processing in adults with the combined type of attention deficit hyperactivity disorder. Clin EEG Neurosci. 2020;51:167–173. doi: 10.1177/1550059419895142. PubMed DOI

Deiber M-P, Hasler R, Colin J, et al. Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage Clin. 2020;25:102145. doi: 10.1016/j.nicl.2019.102145. PubMed DOI PMC

Sari Gokten E, Tulay EE, Beser B, et al. Predictive value of slow and fast EEG oscillations for methylphenidate response in ADHD. Clin EEG Neurosci. 2019;50:332–338. doi: 10.1177/1550059419863206. PubMed DOI

Hasler R, Perroud N, Meziane HB, et al. Attention-related EEG markers in adult ADHD. Neuropsychologia. 2016;87:120–133. doi: 10.1016/j.neuropsychologia.2016.05.008. PubMed DOI

Kaiser A, Aggensteiner P-M, Baumeister S, et al. Earlier versus later cognitive event-related potentials (ERPs) in attention-deficit/hyperactivity disorder (ADHD): a meta-analysis. Neurosci Biobehav Rev. 2020;112:117–134. doi: 10.1016/j.neubiorev.2020.01.019. PubMed DOI

Andrew C, Fein G. Event-related oscillations versus event-related potentials in a P300 task as biomarkers for alcoholism. Alcohol Clin Exp Res. 2010;34:669–680. doi: 10.1111/j.1530-0277.2009.01136.x. PubMed DOI PMC

Popp F, Dallmer-Zerbe I, Philipsen A, Herrmann CS. Challenges of P300 modulation using transcranial alternating current stimulation (tACS) Front Psychol. 2019;10:476. doi: 10.3389/fpsyg.2019.00476. PubMed DOI PMC

Hwang K, Ghuman AS, Manoach DS, et al. Cortical neurodynamics of inhibitory control. J Neurosci Off J Soc Neurosci. 2014;34:9551–9561. doi: 10.1523/JNEUROSCI.4889-13.2014. PubMed DOI PMC

Passarotti AM, Sweeney JA, Pavuluri MN. Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Res. 2010;181:36–43. doi: 10.1016/j.pscychresns.2009.07.002. PubMed DOI PMC

Bodkyn CN, Holroyd CB. Neural mechanisms of affective instability and cognitive control in substance use. Int J Psychophysiol Off J Int Organ Psychophysiol. 2019;146:1–19. doi: 10.1016/j.ijpsycho.2019.08.003. PubMed DOI

Kim-Spoon J, Deater-Deckard K, Brieant A, et al. Brains of a feather flocking together? Peer and individual neurobehavioral risks for substance use across adolescence. Dev Psychopathol. 2019;31:1661–1674. doi: 10.1017/S0954579419001056. PubMed DOI PMC

Kim-Spoon J, Herd T, Brieant A, et al. Bidirectional links between adolescent brain function and substance use moderated by cognitive control. J Child Psychol Psychiatry. 2021;62:427–436. doi: 10.1111/jcpp.13285. PubMed DOI PMC

Billieux J, Gay P, Rochat L, et al. Lack of inhibitory control predicts cigarette smoking dependence: evidence from a non-deprived sample of light to moderate smokers. Drug Alcohol Depend. 2010;112:164–167. doi: 10.1016/j.drugalcdep.2010.06.006. PubMed DOI

Li CR, Luo X, Yan P, et al. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol Clin Exp Res. 2009;33:740–750. doi: 10.1111/j.1530-0277.2008.00891.x. PubMed DOI PMC

Luijten M, Machielsen MWJ, Veltman DJ, et al. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci JPN. 2014;39:149–169. doi: 10.1503/jpn.130052. PubMed DOI PMC

Bel-Bahar TS, Khan AA, Shaik RB, Parvaz MA. A scoping review of electroencephalographic (EEG) markers for tracking neurophysiological changes and predicting outcomes in substance use disorder treatment. Front Hum Neurosci. 2022;16:995534. doi: 10.3389/fnhum.2022.995534. PubMed DOI PMC

Campanella S, Pogarell O, Boutros N. Event-related potentials in substance use disorders: a narrative review based on articles from 1984 to 2012. Clin EEG Neurosci. 2014;45:67–76. doi: 10.1177/1550059413495533. PubMed DOI

Ceballos NA, Bauer LO, Houston RJ. Recent EEG and ERP findings in substance abusers. Clin EEG Neurosci. 2009;40:122–128. doi: 10.1177/155005940904000210. PubMed DOI PMC

Premraj L, Kannapadi NV, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci. 2022;434:120162. doi: 10.1016/j.jns.2022.120162. PubMed DOI PMC

Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2022;101:93–135. doi: 10.1016/j.bbi.2021.12.020. PubMed DOI PMC

Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement J Alzheimers Assoc. 2022;18:1047–1066. doi: 10.1002/alz.12644. PubMed DOI PMC

Hameed S, Saleem S, Sajjad A, et al. Spectrum of EEG abnormalities in COVID-19 patients. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2022 doi: 10.1097/WNP.0000000000000964. PubMed DOI

Kubota T, Gajera PK, Kuroda N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav EB. 2021;115:107682. doi: 10.1016/j.yebeh.2020.107682. PubMed DOI PMC

Chang C-H, Chen S-J, Chen Y-C, Tsai H-C. A 30-year-old woman with an 8-week history of anxiety, depression, insomnia, and mild cognitive impairment following COVID-19 who responded to accelerated bilateral theta-burst transcranial magnetic stimulation over the prefrontal cortex. Am J Case Rep. 2023;24:e938732. doi: 10.12659/AJCR.938732. PubMed DOI PMC

Noda Y, Sato A, Fujii K, et al. A pilot study of the effect of transcranial magnetic stimulation treatment on cognitive dysfunction associated with post COVID-19 condition. Psychiatry Clin Neurosci. 2023;77:241–242. doi: 10.1111/pcn.13527. PubMed DOI

Frohlich F, Townsend L. Closed-loop transcranial alternating current stimulation: towards personalized non-invasive brain stimulation for the treatment of psychiatric illnesses. Curr Behav Neurosci Rep. 2021;8:51–57. doi: 10.1007/s40473-021-00227-8. DOI

Klírová M, Voráčková V, Horáček J, et al. Modulating inhibitory control processes using individualized high definition theta transcranial alternating current stimulation (HD θ-tACS) of the anterior cingulate and medial prefrontal cortex. Front Syst Neurosci. 2021;15:611507. doi: 10.3389/fnsys.2021.611507. PubMed DOI PMC

Ketz N, Jones AP, Bryant NB, et al. Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J Neurosci Off J Soc Neurosci. 2018;38:7314–7326. doi: 10.1523/JNEUROSCI.0273-18.2018. PubMed DOI PMC

Stecher HI, Notbohm A, Kasten FH, Herrmann CS. A comparison of closed loop vs. fixed frequency tACS on modulating brain oscillations and visual detection. Front Hum Neurosci. 2021;15:661432. doi: 10.3389/fnhum.2021.661432. PubMed DOI PMC

Bahar-Fuchs A, Martyr A, Goh AM, et al. Cognitive training for people with mild to moderate dementia. Cochrane Database Syst Rev. 2019;3:CD013069. doi: 10.1002/14651858.CD013069.pub2. PubMed DOI PMC

Bellani M, Ricciardi C, Rossetti MG, et al. Cognitive remediation in schizophrenia: the earlier the better? Epidemiol Psychiatr Sci. 2019;29:e57. doi: 10.1017/S2045796019000532. PubMed DOI PMC

Hill NTM, Mowszowski L, Naismith SL, et al. Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. Am J Psychiatry. 2017;174:329–340. doi: 10.1176/appi.ajp.2016.16030360. PubMed DOI

Janssens SEW, Sack AT. Spontaneous fluctuations in oscillatory brain state cause differences in transcranial magnetic stimulation effects within and between individuals. Front Hum Neurosci. 2021;15:802244. doi: 10.3389/fnhum.2021.802244. PubMed DOI PMC

Jones KT, Johnson EL, Tauxe ZS, Rojas DC. Modulation of auditory gamma-band responses using transcranial electrical stimulation. J Neurophysiol. 2020;123:2504–2514. doi: 10.1152/jn.00003.2020. PubMed DOI

Jones KT, Johnson EL, Gazzaley A, Zanto TP. Structural and functional network mechanisms of rescuing cognitive control in aging. Neuroimage. 2022;262:119547. doi: 10.1016/j.neuroimage.2022.119547. PubMed DOI PMC

Chai Y, Sheng J, Bandettini PA, Gao J-H. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation. Hum Brain Mapp. 2018;39:2111–2120. doi: 10.1002/hbm.23990. PubMed DOI PMC

Abellaneda-Pérez K, Vaqué-Alcázar L, Perellón-Alfonso R, et al. Differential tDCS and tACS effects on working memory-related neural activity and resting-state connectivity. Front Neurosci. 2019;13:1440. doi: 10.3389/fnins.2019.01440. PubMed DOI PMC

Turi Z, Mittner M, Lehr A, et al. θ-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro. 2020;7:ENEURO.0126-20.2020. doi: 10.1523/ENEURO.0126-20.2020. PubMed DOI PMC

Yakubov B, Das S, Zomorrodi R, et al. Cross-frequency coupling in psychiatric disorders: a systematic review. Neurosci Biobehav Rev. 2022;138:104690. doi: 10.1016/j.neubiorev.2022.104690. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...