Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU22-D-133
Ministerstvo Zdravotnictví Ceské Republiky
NU22-04-00192
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
37682331
PubMed Central
PMC11127835
DOI
10.1007/s00406-023-01687-7
PII: 10.1007/s00406-023-01687-7
Knihovny.cz E-zdroje
- Klíčová slova
- ADHD, COVID-19, Cognitive impairment, Dementia, Depression, Non-invasive brain stimulation (NIBS), OCD, Psychiatry, SUD, Schizophrenia, Transcranial alternating current stimulation (tACS),
- MeSH
- duševní poruchy * terapie patofyziologie MeSH
- kognitivní dysfunkce * patofyziologie etiologie terapie MeSH
- lidé MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
3rd Faculty of Medicine Charles University Prague Czech Republic
Neurostimulation Department National Institute of Mental Health Klecany Czech Republic
Zobrazit více v PubMed
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci. 2023;27:189–205. doi: 10.1016/j.tics.2022.11.013. PubMed DOI PMC
Liu A, Vöröslakos M, Kronberg G, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9:5092. doi: 10.1038/s41467-018-07233-7. PubMed DOI PMC
Alekseichuk I, Falchier AY, Linn G, et al. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun. 2019;10:2573. doi: 10.1038/s41467-019-10581-7. PubMed DOI PMC
Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci. 2021;271:135–156. doi: 10.1007/s00406-020-01209-9. PubMed DOI PMC
Buzzell GA, Barker TV, Troller-Renfree SV, et al. Adolescent cognitive control, theta oscillations, and social observation. Neuroimage. 2019;198:13–30. doi: 10.1016/j.neuroimage.2019.04.077. PubMed DOI PMC
Karakaş S. A review of theta oscillation and its functional correlates. Int J Psychophysiol Off J Int Organ Psychophysiol. 2020;157:82–99. doi: 10.1016/j.ijpsycho.2020.04.008. PubMed DOI
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29:169–195. doi: 10.1016/s0165-0173(98)00056-3. PubMed DOI
Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol. 2018;52:182–187. doi: 10.1016/j.conb.2018.07.009. PubMed DOI PMC
Sadaghiani S, Kleinschmidt A. Brain networks and α-oscillations: structural and functional foundations of cognitive control. Trends Cogn Sci. 2016;20:805–817. doi: 10.1016/j.tics.2016.09.004. PubMed DOI
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: gamma oscillations as units of neural circuit operations. Neuron. 2023;111:936–953. doi: 10.1016/j.neuron.2023.02.026. PubMed DOI PMC
Klink K, Paßmann S, Kasten FH, Peter J. The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects. Brain Sci. 2020;10:932. doi: 10.3390/brainsci10120932. PubMed DOI PMC
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ Sci Learn. 2023;8:1. doi: 10.1038/s41539-022-00152-9. PubMed DOI PMC
Fusco G, Cristiano A, Perazzini A, Aglioti SM. Neuromodulating the performance monitoring network during conflict and error processing in healthy populations: Insights from transcranial electric stimulation studies. Front Integr Neurosci. 2022;16:953928. doi: 10.3389/fnint.2022.953928. PubMed DOI PMC
Nissim NR, McAfee DC, Edwards S, et al. Efficacy of transcranial alternating current stimulation in the enhancement of working memory performance in healthy adults: a systematic meta-analysis. Neuromodulation J Int Neuromodulation Soc. 2023;26:728–737. doi: 10.1016/j.neurom.2022.12.014. PubMed DOI PMC
Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: a systematic review. Cortex J Devoted Study Nerv Syst Behav. 2022;147:112–139. doi: 10.1016/j.cortex.2021.12.001. PubMed DOI
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC
Del Felice A, Castiglia L, Formaggio E, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. NeuroImage Clin. 2019;22:101768. doi: 10.1016/j.nicl.2019.101768. PubMed DOI PMC
Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson’s disease. Prog Brain Res. 2022;269:435–455. doi: 10.1016/bs.pbr.2022.01.016. PubMed DOI PMC
Goodwill AM, Lum JAG, Hendy AM, et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep. 2017;7:14840. doi: 10.1038/s41598-017-13260-z. PubMed DOI PMC
Bernardi L, Bertuccelli M, Formaggio E, et al. Beyond physiotherapy and pharmacological treatment for fibromyalgia syndrome: tailored tACS as a new therapeutic tool. Eur Arch Psychiatry Clin Neurosci. 2021;271:199–210. doi: 10.1007/s00406-020-01214-y. PubMed DOI PMC
Chang C-C, Huang CC-Y, Chung Y-A, et al. Online left-hemispheric in-phase frontoparietal theta tACS for the treatment of negative symptoms of schizophrenia. J Pers Med. 2021 doi: 10.3390/jpm11111114. PubMed DOI PMC
Mellin JM, Alagapan S, Lustenberger C, et al. Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur Psychiatry J Assoc Eur Psychiatr. 2018;51:25–33. doi: 10.1016/j.eurpsy.2018.01.004. PubMed DOI PMC
Hoy KE, Whitty D, Bailey N, Fitzgerald PB. Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia. J Neural Transm Vienna Austria. 2016;1996(123):1205–1212. doi: 10.1007/s00702-016-1554-1. PubMed DOI
Haller N, Hasan A, Padberg F, et al. Gamma transcranial alternating current stimulation for treatment of negative symptoms in schizophrenia: Report of two cases. Asian J Psychiatry. 2020;54:102423. doi: 10.1016/j.ajp.2020.102423. PubMed DOI
Haller N, Hasan A, Padberg F, et al. Gamma transcranial alternating current stimulation in patients with negative symptoms in schizophrenia: a case series. Neurophysiol Clin Clin Neurophysiol. 2020;50:301–304. doi: 10.1016/j.neucli.2020.06.004. PubMed DOI
Sreeraj VS, Shanbhag V, Nawani H, et al. Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J Psychol Med. 2017;39:92–95. doi: 10.4103/0253-7176.198937. PubMed DOI PMC
Sreeraj VS, Shivakumar V, Sowmya S, et al. Online theta frequency transcranial alternating current stimulation for cognitive remediation in schizophrenia: a case report and review of literature. J ECT. 2019;35:139–143. doi: 10.1097/YCT.0000000000000523. PubMed DOI
Zhou D, Li A, Li X, et al. Effects of 40 Hz transcranial alternating current stimulation (tACS) on cognitive functions of patients with Alzheimer’s disease: a randomised, double-blind, sham-controlled clinical trial. J Neurol Neurosurg Psychiatry. 2022;93:568–570. doi: 10.1136/jnnp-2021-326885. PubMed DOI
Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann Neurol. 2022;92:322–334. doi: 10.1002/ana.26411. PubMed DOI PMC
Mimura Y, Nishida H, Nakajima S, et al. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;121:47–59. doi: 10.1016/j.neubiorev.2020.12.003. PubMed DOI
Chaieb L, Antal A, Masurat F, Paulus W. Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Front Behav Neurosci. 2015;9:147. doi: 10.3389/fnbeh.2015.00147. PubMed DOI PMC
Di Lazzaro V, Oliviero A, Tonali PA, et al. Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology. 2002;59:392–397. doi: 10.1212/wnl.59.3.392. PubMed DOI
Benussi A, Grassi M, Palluzzi F, et al. Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias. Ann Neurol. 2020;87:394–404. doi: 10.1002/ana.25677. PubMed DOI
Benussi A, Cantoni V, Cotelli MS, et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimulat. 2021;14:531–540. doi: 10.1016/j.brs.2021.03.007. PubMed DOI
Naro A, Corallo F, De Salvo S, et al. Promising role of neuromodulation in predicting the progression of mild cognitive impairment to dementia. J Alzheimers Dis JAD. 2016;53:1375–1388. doi: 10.3233/JAD-160305. PubMed DOI
Moussavi Z, Kimura K, Kehler L, et al. A novel program to improve cognitive function in individuals with dementia using transcranial alternating current stimulation (tACS) and tutored cognitive exercises. Front Aging. 2021;2:632545. doi: 10.3389/fragi.2021.632545. PubMed DOI PMC
Sprugnoli G, Munsch F, Cappon D, et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer’s disease. Alzheimers Res Ther. 2021;13:203. doi: 10.1186/s13195-021-00922-4. PubMed DOI PMC
Bréchet L, Yu W, Biagi MC, et al. Patient-tailored, home-based non-invasive brain stimulation for memory deficits in dementia due to Alzheimer’s disease. Front Neurol. 2021;12:598135. doi: 10.3389/fneur.2021.598135. PubMed DOI PMC
Liu Y, Tang C, Wei K, et al. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer’s disease: a case report and literature review. Front Neurol. 2022;13:962684. doi: 10.3389/fneur.2022.962684. PubMed DOI PMC
Kim J, Kim H, Jeong H, et al. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J Psychiatr Res. 2021;141:248–256. doi: 10.1016/j.jpsychires.2021.07.012. PubMed DOI
Palm U, Baumgartner C, Hoffmann L, et al. Single session gamma transcranial alternating stimulation does not modulate working memory in depressed patients and healthy controls. Neurophysiol Clin Clin Neurophysiol. 2022;52:128–136. doi: 10.1016/j.neucli.2022.03.002. PubMed DOI
Alexander ML, Alagapan S, Lugo CE, et al. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD) Transl Psychiatry. 2019;9:106. doi: 10.1038/s41398-019-0439-0. PubMed DOI PMC
Haller N, Senner F, Brunoni AR, et al. Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J Psychiatr Res. 2020;130:31–34. doi: 10.1016/j.jpsychires.2020.07.009. PubMed DOI
Wilkening A, Kurzeck A, Dechantsreiter E, et al. Transcranial alternating current stimulation for the treatment of major depression during pregnancy. Psychiatry Res. 2019;279:399–400. doi: 10.1016/j.psychres.2019.06.009. PubMed DOI
Haller N, Senner F, Hasan A, et al. Gamma transcranial alternating current stimulation (γtACS) in obsessive-compulsive disorder: a case report. Fortschr Neurol Psychiatr. 2020;88:398–401. doi: 10.1055/a-1149-9216. PubMed DOI
Kannen K, Aslan B, Boetzel C, et al. P300 modulation via transcranial alternating current stimulation in adult attention-deficit/hyperactivity disorder: a crossover study. Front Psychiatry. 2022;13:928145. doi: 10.3389/fpsyt.2022.928145. PubMed DOI PMC
Dallmer-Zerbe I, Popp F, Lam AP, et al. Transcranial Alternating current stimulation (tACS) as a tool to modulate P300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr. 2020;33:191–207. doi: 10.1007/s10548-020-00752-x. PubMed DOI PMC
Amouzadeh F, Sheikh M. Impact of transcranial alternating current stimulation on working memory and selective attention in athletes with attention deficit hyperactivity disorder: randomized controlled trial. NeuroReport. 2022;33:756–762. doi: 10.1097/WNR.0000000000001842. PubMed DOI
Daughters SB, Yi JY, Phillips RD, et al. Alpha-tACS effect on inhibitory control and feasibility of administration in community outpatient substance use treatment. Drug Alcohol Depend. 2020;213:108132. doi: 10.1016/j.drugalcdep.2020.108132. PubMed DOI PMC
McKim TH, Dove SJ, Robinson DL, et al. Addiction history moderates the effect of prefrontal 10-Hz transcranial alternating current stimulation on habitual action selection. J Neurophysiol. 2021;125:768–780. doi: 10.1152/jn.00180.2020. PubMed DOI PMC
Sabel BA, Zhou W, Huber F, et al. Non-invasive brain microcurrent stimulation therapy of long-COVID-19 reduces vascular dysregulation and improves visual and cognitive impairment. Restor Neurol Neurosci. 2021;39:393–408. doi: 10.3233/RNN-211249. PubMed DOI PMC
Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898. PubMed DOI
Bora E, Yücel M, Pantelis C. Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophr Bull. 2010;36:36–42. doi: 10.1093/schbul/sbp094. PubMed DOI PMC
Gebreegziabhere Y, Habatmu K, Mihretu A, et al. Cognitive impairment in people with schizophrenia: an umbrella review. Eur Arch Psychiatry Clin Neurosci. 2022;272:1139–1155. doi: 10.1007/s00406-022-01416-6. PubMed DOI PMC
Sheffield JM, Barch DM. Cognition and resting-state functional connectivity in schizophrenia. Neurosci Biobehav Rev. 2016;61:108–120. doi: 10.1016/j.neubiorev.2015.12.007. PubMed DOI PMC
Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–113. doi: 10.1038/nrn2774. PubMed DOI
Chung DW, Geramita MA, Lewis DA. Synaptic variability and cortical gamma oscillation power in schizophrenia. Am J Psychiatry. 2022;179:277–287. doi: 10.1176/appi.ajp.2021.21080798. PubMed DOI PMC
Shin Y-W, O’Donnell BF, Youn S, Kwon JS. Gamma oscillation in schizophrenia. Psychiatry Investig. 2011;8:288–296. doi: 10.4306/pi.2011.8.4.288. PubMed DOI PMC
McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-an overview. JAMA Psychiat. 2020;77:201–210. doi: 10.1001/jamapsychiatry.2019.3360. PubMed DOI
Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiat. 2014;71:1323–1331. doi: 10.1001/jamapsychiatry.2014.1582. PubMed DOI PMC
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2022;47:292–308. doi: 10.1038/s41386-021-01089-0. PubMed DOI PMC
Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67. doi: 10.1016/j.tins.2011.10.004. PubMed DOI PMC
Dienel SJ, Schoonover KE, Lewis DA. Cognitive dysfunction and prefrontal cortical circuit alterations in schizophrenia: developmental trajectories. Biol Psychiatry. 2022;92:450–459. doi: 10.1016/j.biopsych.2022.03.002. PubMed DOI PMC
Haenschel C, Bittner RA, Waltz J, et al. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci Off J Soc Neurosci. 2009;29:9481–9489. doi: 10.1523/JNEUROSCI.1428-09.2009. PubMed DOI PMC
Howard MW, Rizzuto DS, Caplan JB, et al. Gamma oscillations correlate with working memory load in humans. Cereb Cortex N Y N. 2003;13:1369–1374. doi: 10.1093/cercor/bhg084. PubMed DOI
Jensen O, Kaiser J, Lachaux J-P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–324. doi: 10.1016/j.tins.2007.05.001. PubMed DOI
Chen C-MA, Stanford AD, Mao X, et al. GABA level, gamma oscillation, and working memory performance in schizophrenia. NeuroImage Clin. 2014;4:531–539. doi: 10.1016/j.nicl.2014.03.007. PubMed DOI PMC
Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis. 2019;131:104208. doi: 10.1016/j.nbd.2018.06.020. PubMed DOI PMC
Christophel TB, Klink PC, Spitzer B, et al. The distributed nature of working memory. Trends Cogn Sci. 2017;21:111–124. doi: 10.1016/j.tics.2016.12.007. PubMed DOI
Ratcliffe O, Shapiro K, Staresina BP. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr Biol CB. 2022;32:2121–2129.e3. doi: 10.1016/j.cub.2022.03.045. PubMed DOI PMC
Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron. 2018;100:463–475. doi: 10.1016/j.neuron.2018.09.023. PubMed DOI PMC
Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci. 2014;18:16–25. doi: 10.1016/j.tics.2013.10.010. PubMed DOI
Hyafil A, Giraud A-L, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015;38:725–740. doi: 10.1016/j.tins.2015.09.001. PubMed DOI
Abubaker M, Al Qasem W, Kvašňák E. Working memory and cross-frequency coupling of neuronal oscillations. Front Psychol. 2021;12:756661. doi: 10.3389/fpsyg.2021.756661. PubMed DOI PMC
Lisman JE, Jensen O. The θ-γ neural code. Neuron. 2013;77:1002–1016. doi: 10.1016/j.neuron.2013.03.007. PubMed DOI PMC
Alekseichuk I, Turi Z, Amador de Lara G, et al. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol CB. 2016;26:1513–1521. doi: 10.1016/j.cub.2016.04.035. PubMed DOI
Barr MS, Rajji TK, Zomorrodi R, et al. Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophr Res. 2017;189:104–110. doi: 10.1016/j.schres.2017.01.044. PubMed DOI
Lee TH, Kim M, Hwang WJ, et al. Relationship between resting-state theta phase-gamma amplitude coupling and neurocognitive functioning in patients with first-episode psychosis. Schizophr Res. 2020;216:154–160. doi: 10.1016/j.schres.2019.12.010. PubMed DOI
APA (2013) Diagnostic and statistical manual of mental disorders. 5th edition. Washington, DC: American Psychiatric Association
Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am. 2019;103:263–293. doi: 10.1016/j.mcna.2018.10.009. PubMed DOI
Kirova A-M, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed Res Int. 2015;2015:748212. doi: 10.1155/2015/748212. PubMed DOI PMC
Jafari Z, Kolb BE, Mohajerani MH. Neural oscillations and brain stimulation in Alzheimer’s disease. Prog Neurobiol. 2020;194:101878. doi: 10.1016/j.pneurobio.2020.101878. PubMed DOI
Başar E, Emek-Savaş DD, Güntekin B, Yener GG. Delay of cognitive gamma responses in Alzheimer’s disease. NeuroImage Clin. 2016;11:106–115. doi: 10.1016/j.nicl.2016.01.015. PubMed DOI PMC
Başar E, Femir B, Emek-Savaş DD, et al. Increased long distance event-related gamma band connectivity in Alzheimer’s disease. NeuroImage Clin. 2017;14:580–590. doi: 10.1016/j.nicl.2017.02.021. PubMed DOI PMC
Goodman MS, Kumar S, Zomorrodi R, et al. Theta-gamma coupling and working memory in alzheimer’s dementia and mild cognitive impairment. Front Aging Neurosci. 2018;10:101. doi: 10.3389/fnagi.2018.00101. PubMed DOI PMC
Yener G, Hünerli-Gündüz D, Yıldırım E, et al. Treatment effects on event-related EEG potentials and oscillations in Alzheimer’s disease. Int J Psychophysiol Off J Int Organ Psychophysiol. 2022;177:179–201. doi: 10.1016/j.ijpsycho.2022.05.008. PubMed DOI
Casula EP, Pellicciari MC, Bonnì S, et al. Decreased frontal gamma activity in Alzheimer disease patients. Ann Neurol. 2022;92:464–475. doi: 10.1002/ana.26444. PubMed DOI PMC
Martorell AJ, Paulson AL, Suk H-J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell. 2019;177:256–271.e22. doi: 10.1016/j.cell.2019.02.014. PubMed DOI PMC
Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–235. doi: 10.1038/nature20587. PubMed DOI PMC
Dhaynaut M, Sprugnoli G, Cappon D, et al. Impact of 40 Hz transcranial alternating current stimulation on cerebral tau burden in patients with Alzheimer’s disease: a case series. J Alzheimers Dis JAD. 2022;85:1667–1676. doi: 10.3233/JAD-215072. PubMed DOI PMC
Adaikkan C, Tsai L-H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci. 2020;43:24–41. doi: 10.1016/j.tins.2019.11.001. PubMed DOI
Gaubert S, Raimondo F, Houot M, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain J Neurol. 2019;142:2096–2112. doi: 10.1093/brain/awz150. PubMed DOI
Menardi A, Rossi S, Koch G, et al. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res Rev. 2022;75:101555. doi: 10.1016/j.arr.2021.101555. PubMed DOI PMC
Pontecorvo MJ, Devous MD, Navitsky M, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain J Neurol. 2017;140:748–763. doi: 10.1093/brain/aww334. PubMed DOI PMC
Kumar S, Zomorrodi R, Ghazala Z, et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease. JAMA Psychiat. 2017;74:1266–1274. doi: 10.1001/jamapsychiatry.2017.3292. PubMed DOI PMC
Jongsiriyanyong S, Limpawattana P. Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Demen. 2018;33:500–507. doi: 10.1177/1533317518791401. PubMed DOI PMC
Petersen RC, Caracciolo B, Brayne C, et al. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275:214–228. doi: 10.1111/joim.12190. PubMed DOI PMC
Fraga FJ, Mamani GQ, Johns E, et al. Early diagnosis of mild cognitive impairment and Alzheimer’s with event-related potentials and event-related desynchronization in N-back working memory tasks. Comput Methods Programs Biomed. 2018;164:1–13. doi: 10.1016/j.cmpb.2018.06.011. PubMed DOI
Missonnier P, Deiber M-P, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience. 2007;150:346–356. doi: 10.1016/j.neuroscience.2007.09.009. PubMed DOI
Tülay EE, Güntekin B, Yener G, et al. Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s disease. Int J Psychophysiol Off J Int Organ Psychophysiol. 2020;155:41–48. doi: 10.1016/j.ijpsycho.2020.06.001. PubMed DOI
Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Primer. 2016;2:1–20. doi: 10.1038/nrdp.2016.65. PubMed DOI
Knight MJ, Baune BT. Cognitive dysfunction in major depressive disorder. Curr Opin Psychiatry. 2018;31:26–31. doi: 10.1097/YCO.0000000000000378. PubMed DOI
Pan Z, Park C, Brietzke E, et al. Cognitive impairment in major depressive disorder. CNS Spectr. 2019;24:22–29. doi: 10.1017/S1092852918001207. PubMed DOI
Strelets VB, Garakh ZV, Novototskii-Vlasov VY. Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode. Neurosci Behav Physiol. 2007;37:387–394. doi: 10.1007/s11055-007-0025-4. PubMed DOI
Maiella M, Casula EP, Borghi I, et al. Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex. Sci Rep. 2022;12:19391. doi: 10.1038/s41598-022-23040-z. PubMed DOI PMC
Koo PC, Berger C, Kronenberg G, et al. Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2019;269:823–832. doi: 10.1007/s00406-018-0952-9. PubMed DOI
Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat. 2015;72:603–611. doi: 10.1001/jamapsychiatry.2015.0071. PubMed DOI PMC
Abramovitch A, Cooperman A. The cognitive neuropsychology of obsessive-compulsive disorder: a critical review. J Obsessive-Compuls Relat Disord. 2015;5:24–36. doi: 10.1016/j.jocrd.2015.01.002. DOI
Funch Uhre V, Melissa Larsen K, Marc Herz D, et al. Inhibitory control in obsessive compulsive disorder: a systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. NeuroImage Clin. 2022;36:103268. doi: 10.1016/j.nicl.2022.103268. PubMed DOI PMC
van Velzen LS, Vriend C, de Wit SJ, van den Heuvel OA. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Hum Neurosci. 2014 doi: 10.3389/fnhum.2014.00419. PubMed DOI PMC
Park JY, Lee J, Park H-J, et al. Alpha amplitude and phase locking in obsessive-compulsive disorder during working memory. Int J Psychophysiol Off J Int Organ Psychophysiol. 2012;83:1–7. doi: 10.1016/j.ijpsycho.2011.09.014. PubMed DOI
Ciesielski KT, Hämäläinen MS, Geller DA, et al. Dissociation between MEG alpha modulation and performance accuracy on visual working memory task in obsessive compulsive disorder. Hum Brain Mapp. 2007;28:1401–1414. doi: 10.1002/hbm.20365. PubMed DOI PMC
Treu S, Gonzalez-Rosa JJ, Soto-Leon V, et al. A ventromedial prefrontal dysrhythmia in obsessive-compulsive disorder is attenuated by nucleus accumbens deep brain stimulation. Brain Stimul Basic Transl Clin Res Neuromodulation. 2021;14:761–770. doi: 10.1016/j.brs.2021.04.028. PubMed DOI
Fuermaier ABM, Tucha L, Koerts J, et al. Cognitive impairment in adult ADHD–perspective matters! Neuropsychology. 2015;29:45–58. doi: 10.1037/neu0000108. PubMed DOI
Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2006;23:440–455. doi: 10.1097/01.wnp.0000221363.12503.78. PubMed DOI
Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord. 2013;17:374–383. doi: 10.1177/1087054712460087. PubMed DOI
Saad JF, Kohn MR, Clarke S, et al. Is the theta/beta eeg marker for ADHD inherently flawed? J Atten Disord. 2018;22:815–826. doi: 10.1177/1087054715578270. PubMed DOI
Kiiski H, Bennett M, Rueda-Delgado LM, et al. EEG spectral power, but not theta/beta ratio, is a neuromarker for adult ADHD. Eur J Neurosci. 2020;51:2095–2109. doi: 10.1111/ejn.14645. PubMed DOI
Picken C, Clarke AR, Barry RJ, et al. The theta/beta ratio as an index of cognitive processing in adults with the combined type of attention deficit hyperactivity disorder. Clin EEG Neurosci. 2020;51:167–173. doi: 10.1177/1550059419895142. PubMed DOI
Deiber M-P, Hasler R, Colin J, et al. Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage Clin. 2020;25:102145. doi: 10.1016/j.nicl.2019.102145. PubMed DOI PMC
Sari Gokten E, Tulay EE, Beser B, et al. Predictive value of slow and fast EEG oscillations for methylphenidate response in ADHD. Clin EEG Neurosci. 2019;50:332–338. doi: 10.1177/1550059419863206. PubMed DOI
Hasler R, Perroud N, Meziane HB, et al. Attention-related EEG markers in adult ADHD. Neuropsychologia. 2016;87:120–133. doi: 10.1016/j.neuropsychologia.2016.05.008. PubMed DOI
Kaiser A, Aggensteiner P-M, Baumeister S, et al. Earlier versus later cognitive event-related potentials (ERPs) in attention-deficit/hyperactivity disorder (ADHD): a meta-analysis. Neurosci Biobehav Rev. 2020;112:117–134. doi: 10.1016/j.neubiorev.2020.01.019. PubMed DOI
Andrew C, Fein G. Event-related oscillations versus event-related potentials in a P300 task as biomarkers for alcoholism. Alcohol Clin Exp Res. 2010;34:669–680. doi: 10.1111/j.1530-0277.2009.01136.x. PubMed DOI PMC
Popp F, Dallmer-Zerbe I, Philipsen A, Herrmann CS. Challenges of P300 modulation using transcranial alternating current stimulation (tACS) Front Psychol. 2019;10:476. doi: 10.3389/fpsyg.2019.00476. PubMed DOI PMC
Hwang K, Ghuman AS, Manoach DS, et al. Cortical neurodynamics of inhibitory control. J Neurosci Off J Soc Neurosci. 2014;34:9551–9561. doi: 10.1523/JNEUROSCI.4889-13.2014. PubMed DOI PMC
Passarotti AM, Sweeney JA, Pavuluri MN. Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Res. 2010;181:36–43. doi: 10.1016/j.pscychresns.2009.07.002. PubMed DOI PMC
Bodkyn CN, Holroyd CB. Neural mechanisms of affective instability and cognitive control in substance use. Int J Psychophysiol Off J Int Organ Psychophysiol. 2019;146:1–19. doi: 10.1016/j.ijpsycho.2019.08.003. PubMed DOI
Kim-Spoon J, Deater-Deckard K, Brieant A, et al. Brains of a feather flocking together? Peer and individual neurobehavioral risks for substance use across adolescence. Dev Psychopathol. 2019;31:1661–1674. doi: 10.1017/S0954579419001056. PubMed DOI PMC
Kim-Spoon J, Herd T, Brieant A, et al. Bidirectional links between adolescent brain function and substance use moderated by cognitive control. J Child Psychol Psychiatry. 2021;62:427–436. doi: 10.1111/jcpp.13285. PubMed DOI PMC
Billieux J, Gay P, Rochat L, et al. Lack of inhibitory control predicts cigarette smoking dependence: evidence from a non-deprived sample of light to moderate smokers. Drug Alcohol Depend. 2010;112:164–167. doi: 10.1016/j.drugalcdep.2010.06.006. PubMed DOI
Li CR, Luo X, Yan P, et al. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol Clin Exp Res. 2009;33:740–750. doi: 10.1111/j.1530-0277.2008.00891.x. PubMed DOI PMC
Luijten M, Machielsen MWJ, Veltman DJ, et al. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci JPN. 2014;39:149–169. doi: 10.1503/jpn.130052. PubMed DOI PMC
Bel-Bahar TS, Khan AA, Shaik RB, Parvaz MA. A scoping review of electroencephalographic (EEG) markers for tracking neurophysiological changes and predicting outcomes in substance use disorder treatment. Front Hum Neurosci. 2022;16:995534. doi: 10.3389/fnhum.2022.995534. PubMed DOI PMC
Campanella S, Pogarell O, Boutros N. Event-related potentials in substance use disorders: a narrative review based on articles from 1984 to 2012. Clin EEG Neurosci. 2014;45:67–76. doi: 10.1177/1550059413495533. PubMed DOI
Ceballos NA, Bauer LO, Houston RJ. Recent EEG and ERP findings in substance abusers. Clin EEG Neurosci. 2009;40:122–128. doi: 10.1177/155005940904000210. PubMed DOI PMC
Premraj L, Kannapadi NV, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci. 2022;434:120162. doi: 10.1016/j.jns.2022.120162. PubMed DOI PMC
Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2022;101:93–135. doi: 10.1016/j.bbi.2021.12.020. PubMed DOI PMC
Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement J Alzheimers Assoc. 2022;18:1047–1066. doi: 10.1002/alz.12644. PubMed DOI PMC
Hameed S, Saleem S, Sajjad A, et al. Spectrum of EEG abnormalities in COVID-19 patients. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2022 doi: 10.1097/WNP.0000000000000964. PubMed DOI
Kubota T, Gajera PK, Kuroda N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav EB. 2021;115:107682. doi: 10.1016/j.yebeh.2020.107682. PubMed DOI PMC
Chang C-H, Chen S-J, Chen Y-C, Tsai H-C. A 30-year-old woman with an 8-week history of anxiety, depression, insomnia, and mild cognitive impairment following COVID-19 who responded to accelerated bilateral theta-burst transcranial magnetic stimulation over the prefrontal cortex. Am J Case Rep. 2023;24:e938732. doi: 10.12659/AJCR.938732. PubMed DOI PMC
Noda Y, Sato A, Fujii K, et al. A pilot study of the effect of transcranial magnetic stimulation treatment on cognitive dysfunction associated with post COVID-19 condition. Psychiatry Clin Neurosci. 2023;77:241–242. doi: 10.1111/pcn.13527. PubMed DOI
Frohlich F, Townsend L. Closed-loop transcranial alternating current stimulation: towards personalized non-invasive brain stimulation for the treatment of psychiatric illnesses. Curr Behav Neurosci Rep. 2021;8:51–57. doi: 10.1007/s40473-021-00227-8. DOI
Klírová M, Voráčková V, Horáček J, et al. Modulating inhibitory control processes using individualized high definition theta transcranial alternating current stimulation (HD θ-tACS) of the anterior cingulate and medial prefrontal cortex. Front Syst Neurosci. 2021;15:611507. doi: 10.3389/fnsys.2021.611507. PubMed DOI PMC
Ketz N, Jones AP, Bryant NB, et al. Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J Neurosci Off J Soc Neurosci. 2018;38:7314–7326. doi: 10.1523/JNEUROSCI.0273-18.2018. PubMed DOI PMC
Stecher HI, Notbohm A, Kasten FH, Herrmann CS. A comparison of closed loop vs. fixed frequency tACS on modulating brain oscillations and visual detection. Front Hum Neurosci. 2021;15:661432. doi: 10.3389/fnhum.2021.661432. PubMed DOI PMC
Bahar-Fuchs A, Martyr A, Goh AM, et al. Cognitive training for people with mild to moderate dementia. Cochrane Database Syst Rev. 2019;3:CD013069. doi: 10.1002/14651858.CD013069.pub2. PubMed DOI PMC
Bellani M, Ricciardi C, Rossetti MG, et al. Cognitive remediation in schizophrenia: the earlier the better? Epidemiol Psychiatr Sci. 2019;29:e57. doi: 10.1017/S2045796019000532. PubMed DOI PMC
Hill NTM, Mowszowski L, Naismith SL, et al. Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. Am J Psychiatry. 2017;174:329–340. doi: 10.1176/appi.ajp.2016.16030360. PubMed DOI
Janssens SEW, Sack AT. Spontaneous fluctuations in oscillatory brain state cause differences in transcranial magnetic stimulation effects within and between individuals. Front Hum Neurosci. 2021;15:802244. doi: 10.3389/fnhum.2021.802244. PubMed DOI PMC
Jones KT, Johnson EL, Tauxe ZS, Rojas DC. Modulation of auditory gamma-band responses using transcranial electrical stimulation. J Neurophysiol. 2020;123:2504–2514. doi: 10.1152/jn.00003.2020. PubMed DOI
Jones KT, Johnson EL, Gazzaley A, Zanto TP. Structural and functional network mechanisms of rescuing cognitive control in aging. Neuroimage. 2022;262:119547. doi: 10.1016/j.neuroimage.2022.119547. PubMed DOI PMC
Chai Y, Sheng J, Bandettini PA, Gao J-H. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation. Hum Brain Mapp. 2018;39:2111–2120. doi: 10.1002/hbm.23990. PubMed DOI PMC
Abellaneda-Pérez K, Vaqué-Alcázar L, Perellón-Alfonso R, et al. Differential tDCS and tACS effects on working memory-related neural activity and resting-state connectivity. Front Neurosci. 2019;13:1440. doi: 10.3389/fnins.2019.01440. PubMed DOI PMC
Turi Z, Mittner M, Lehr A, et al. θ-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro. 2020;7:ENEURO.0126-20.2020. doi: 10.1523/ENEURO.0126-20.2020. PubMed DOI PMC
Yakubov B, Das S, Zomorrodi R, et al. Cross-frequency coupling in psychiatric disorders: a systematic review. Neurosci Biobehav Rev. 2022;138:104690. doi: 10.1016/j.neubiorev.2022.104690. PubMed DOI