Targeted sequencing and in vitro splice assays shed light on ABCA4-associated retinopathies missing heritability

. 2023 Oct 12 ; 4 (4) : 100237. [epub] 20230912

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37705246

Grantová podpora
P30 EY019007 NEI NIH HHS - United States
R01 EY028203 NEI NIH HHS - United States
R01 EY028954 NEI NIH HHS - United States
R01 EY029315 NEI NIH HHS - United States

Odkazy

PubMed 37705246
PubMed Central PMC10534262
DOI 10.1016/j.xhgg.2023.100237
PII: S2666-2477(23)00069-6
Knihovny.cz E-zdroje

The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant, while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207 of 520 (39.8%) naive or unsolved cases and 70 of 202 (34.7%) monoallelic cases, while additional causal variants were identified in 54 of 136 (39.7%) probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in Stargardt disease cases.

Blueprint Genetics Espoo Finland

Department of Human Genetics Radboud University Medical Center Nijmegen the Netherlands

Department of Human Genetics Radboud University Medical Center Nijmegen the Netherlands; Max Planck Institute for Psycholinguistics Nijmegen the Netherlands

Department of Human Genetics Radboud University Medical Center Nijmegen the Netherlands; University Lille Inserm CHU Lille U1172 LilNCog Lille Neuroscience and Cognition 59000 Lille France

Department of Ophthalmology Columbia University New York NY USA

Department of Ophthalmology Columbia University New York NY USA; Department of Pathology and Cell Biology Columbia University New York NY USA

Department of Ophthalmology Hadassah Medical Center Faculty of Medicine The Hebrew University of Jerusalem Jerusalem Israel

Department of Ophthalmology Radboud University Medical Center Nijmegen the Netherlands

Department of Ophthalmology Radboud University Medical Center Nijmegen the Netherlands; Department of Epidemiology Erasmus Medical Center Rotterdam the Netherlands; Department of Ophthalmology Erasmus Medical Center Rotterdam the Netherlands; Institute of Molecular and Clinical Ophthalmology Basel Switzerland

Department of Precision Medicine University of Campania Luigi Vanvitelli Naples and Telethon Institute of Genetics and Medicine Pozzuoli Italy

Institute of Human Genetics University of Regensburg Regensburg Germany

Institute of Human Genetics University of Regensburg Regensburg Germany; Institute of Clinical Human Genetics University Hospital Regensburg Regensburg Germany

Research Unit for Rare Diseases Department of Paediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic; Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

The School of Genetics and Microbiology Trinity College Dublin Dublin Ireland

Zobrazit více v PubMed

Blacharski P.A., Newsome D.A. Bilateral macular holes after Nd-Yag laser posterior capsulotomy. Am. J. Ophthalmol. 1988;105:417–418. PubMed

Allikmets R., Singh N., Sun H., Shroyer N.F., Hutchinson A., Chidambaram A., Gerrard B., Baird L., Stauffer D., Peiffer A., et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 1997;15:236–246. PubMed

Maugeri A., Klevering B.J., Rohrschneider K., Blankenagel A., Brunner H.G., Deutman A.F., Hoyng C.B., Cremers F.P. "Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.". Am. J. Hum. Genet. 2000;67:960–966. PubMed PMC

Illing M., Molday L.L., Molday R.S. The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J. Biol. Chem. 1997;272:10303–10310. PubMed

Molday R.S., Zhong M., Quazi F. The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim. Biophys. Acta. 2009;1791:573–583. PubMed PMC

Sparrow J.R., Boulton M. "RPE lipofuscin and its role in retinal pathobiology.". Exp. Eye Res. 2005;80:595–606. PubMed

Sparrow J.R., Wu Y., Kim C.Y., Zhou J. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J. Lipid Res. 2010;51:247–261. PubMed PMC

Cremers F.P.M., Lee W., Collin R.W.J., Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog. Retin. Eye Res. 2020;79 PubMed PMC

Lee W., Zernant J., Su P.Y., Nagasaki T., Tsang S.H., Allikmets R. "A genotype-phenotype correlation matrix for ABCA4 disease based on long-term prognostic outcomes.". JCI Insight. 2022;7 PubMed PMC

Fujinami K., Zernant J., Chana R.K., Wright G.A., Tsunoda K., Ozawa Y., Tsubota K., Robson A.G., Holder G.E., Allikmets R., et al. "Clinical and Molecular Characteristics of Childhood-Onset Stargardt Disease.". Ophthalmology. 2015;122:326–334. PubMed PMC

Runhart E.H., Valkenburg D., Cornelis S.S., Khan M., Sangermano R., Albert S., Bax N.M., Astuti G.D.N., Gilissen C., Pott J.W.R., et al. Late-Onset Stargardt Disease Due to Mild, Deep-Intronic ABCA4 Alleles. Invest. Ophthalmol. Vis. Sci. 2019;60:4249–4256. PubMed

Tanaka K., Lee W., Zernant J., Schuerch K., Ciccone L., Tsang S.H., Sparrow J.R., Allikmets R. The Rapid-Onset Chorioretinopathy Phenotype of ABCA4 Disease. Ophthalmology. 2018;125:89–99. PubMed PMC

Westeneng-van Haaften S.C., Boon C.J.F., Cremers F.P.M., Hoefsloot L.H., den Hollander A.I., Hoyng C.B., Hoyng C.B. "Clinical and genetic characteristics of late-onset Stargardt's disease.". Ophthalmology. 2012;119:1199–1210. PubMed

Zernant J., Lee W., Collison F.T., Fishman G.A., Sergeev Y.V., Schuerch K., Sparrow J.R., Tsang S.H., Allikmets R. "Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration.". J. Med. Genet. 2017;54:404–412. PubMed PMC

Cornelis S.S., Runhart E.H., Bauwens M., Corradi Z., De Baere E., Roosing S., Haer-Wigman L., Dhaenens C.M., Vulto-van Silfhout A.T., Cremers F.P.M. Personalized genetic counseling for Stargardt disease: Offspring risk estimates based on variant severity. Am. J. Hum. Genet. 2022;109:498–507. PubMed PMC

Garanto A., Duijkers L., Tomkiewicz T.Z., Collin R.W.J. "Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic ABCA4 Variant c.4539+2001G>A in Stargardt Disease.". Genes. 2019;10:452. PubMed PMC

Braun T.A., Mullins R.F., Wagner A.H., Andorf J.L., Johnston R.M., Bakall B.B., Deluca A.P., Fishman G.A., Lam B.L., Weleber R.G., et al. "Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease.". Hum. Mol. Genet. 2013;22:5136–5145. PubMed PMC

Cornelis S.S., Bax N.M., Zernant J., Allikmets R., Fritsche L.G., den Dunnen J.T., Ajmal M., Hoyng C.B., Cremers F.P.M. Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases. Hum. Mutat. 2017;38:400–408. PubMed

Khan M., Cornelis S.S., Pozo-Valero M.D., Whelan L., Runhart E.H., Mishra K., Bults F., AlSwaiti Y., AlTalbishi A., De Baere E., et al. "Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics.". Genet. Med. 2020;22:1235–1246. PubMed

Schulz H.L., Grassmann F., Kellner U., Spital G., Rüther K., Jägle H., Hufendiek K., Rating P., Huchzermeyer C., Baier M.J., Weber B.H.F., Stöhr H. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort-Impact of Selected Deep Intronic Variants and Common SNPs. Invest. Ophthalmol. Vis. Sci. 2017;58:394–403. PubMed PMC

Zernant J., Xie Y.A., Ayuso C., Riveiro-Alvarez R., Lopez-Martinez M.A., Simonelli F., Testa F., Gorin M.B., Strom S.P., Bertelsen M., et al. "Analysis of the ABCA4 genomic locus in Stargardt disease.". Hum. Mol. Genet. 2014;23:6797–6806. PubMed PMC

Khan M., Cornelis S.S., Khan M.I., Elmelik D., Manders E., Bakker S., Derks R., Neveling K., van DeVorst M., Gilissen C., et al. "Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease.". Hum. Mutat. 2019;40:1749–1759. PubMed

Albert S., Garanto A., Sangermano R., Khan M., Bax N.M., Hoyng C.B., Zernant J., Lee W., Allikmets R., Collin R.W.J., Cremers F.P.M. "Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease.". Am. J. Hum. Genet. 2018;102:517–527. PubMed PMC

Bauwens M., De Zaeytijd J., Weisschuh N., Kohl S., Meire F., Dahan K., Depasse F., De Jaegere S., De Ravel T., De Rademaeker M., et al. "An augmented ABCA4 screen targeting noncoding regions reveals a deep intronic founder variant in Belgian Stargardt patients.". Hum. Mutat. 2015;36:39–42. PubMed

Bauwens M., Garanto A., Sangermano R., Naessens S., Weisschuh N., De Zaeytijd J., Khan M., Sadler F., Balikova I., Van Cauwenbergh C., et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet. Med. 2019;21:1761–1771. PubMed PMC

Fadaie Z., Khan M., Del Pozo-Valero M., Cornelis S.S., Ayuso C., Cremers F.P.M., Roosing S., Allikmets R., Bauwens M., Ghofrani M., et al. "Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4.". Hum. Mutat. 2019;40:2365–2376. PubMed PMC

Sangermano R., Bax N.M., Bauwens M., van den Born L.I., De Baere E., Garanto A., Collin R.W.J., Goercharn-Ramlal A.S.A., den Engelsman-van Dijk A.H.A., Rohrschneider K., et al. Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T-->C Mutation in Stargardt Disease. Ophthalmology. 2016;123:1375–1385. PubMed

Sangermano R., Garanto A., Khan M., Runhart E.H., Bauwens M., Bax N.M., van den Born L.I., Khan M.I., Cornelis S.S., Verheij J.B.G.M., et al. "Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.". Genet. Med. 2019;21:1751–1760. PubMed PMC

Sangermano R., Khan M., Cornelis S.S., Richelle V., Albert S., Garanto A., Elmelik D., Qamar R., Lugtenberg D., van den Born L.I., et al. "ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease.". Genome Res. 2018;28:100–110. PubMed PMC

Kumar P., Henikoff S., Ng P.C. "Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.". Nat. Protoc. 2009;4:1073–1081. PubMed

Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. PubMed PMC

Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods. 2014;11:361–362. PubMed

Jaganathan K., Kyriazopoulou Panagiotopoulou S., McRae J.F., Darbandi S.F., Knowles D., Li Y.I., Kosmicki J.A., Arbelaez J., Cui W., Schwartz G.B., et al. "Predicting Splicing from Primary Sequence with Deep Learning.". Cell. 2019;176:535–548.e24. PubMed

Leman R., Gaildrat P., Le Gac G., Ka C., Fichou Y., Audrezet M.P., Caux-Moncoutier V., Caputo S.M., Boutry-Kryza N., Léone M., et al. Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Res. 2018;46:7913–7923. PubMed PMC

Yeo G., Burge C.B. "Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals.". J. Comput. Biol. 2004;11:377–394. PubMed

Reese M.G., Eeckman F.H., Kulp D., Haussler D. "Improved splice site detection in Genie.". J. Comput. Biol. 1997;4:311–323. PubMed

Pertea M., Lin X., Salzberg S.L. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 2001;29:1185–1190. PubMed PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Cornelis S.S., Bauwens M., Haer-Wigman L., De. Bruyne M., Pantrangi M., Baere D.E., Hufnagel R.B., Claire-Marie D., Cremers F.P.M. Compendium of clinical variant classification for 2,247 unique ABCA4 variants to improve genetic medicine access for Stargardt Disease. medRxiv. 2023 Preprint at.

Lee W., Zernant J., Nagasaki T., Molday L.L., Su P.Y., Fishman G.A., Tsang S.H., Molday R.S., Allikmets R. "Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease.". Hum. Mol. Genet. 2021;30:1293–1304. PubMed PMC

Corradi Z., Salameh M., Khan M., Héon E., Mishra K., Hitti-Malin R.J., AlSwaiti Y., Aslanian A., Banin E., Brooks B.P., et al. ABCA4 c.859-25A>G, a Frequent Palestinian Founder Mutation Affecting the Intron 7 Branchpoint, Is Associated With Early-Onset Stargardt Disease. Invest. Ophthalmol. Vis. Sci. 2022;63:20. PubMed PMC

Tomkiewicz T.Z., Suarez-Herrera N., Cremers F.P.M., Collin R.W.J., Garanto A. Antisense oligonucleotide-based rescue of aberrant splicing defects caused by 15 pathogenic variants in ABCA4. Int. J. Mol. Sci. 2021;22:4621. PubMed PMC

Del Pozo-Valero M., Riveiro-Alvarez R., Blanco-Kelly F., Aguirre-Lamban J., Martin-Merida I., Iancu I.F., Swafiri S., Lorda-Sanchez I., Rodriguez-Pinilla E., Trujillo-Tiebas M.J., et al. Genotype-Phenotype Correlations in a Spanish Cohort of 506 Families With Biallelic ABCA4 Pathogenic Variants. Am. J. Ophthalmol. 2020;219:195–204. PubMed

Hitti-Malin R.J., Dhaenens C.M., Panneman D.M., Corradi Z., Khan M., Hollander A.I.D., Farrar G.J., Gilissen C., Hoischen A., van de Vorst M., et al. "Using single molecule Molecular Inversion Probes as a cost-effective, high-throughput sequencing approach to target all genes and loci associated with macular diseases.". Hum. Mutat. 2022;43:2234–2250. doi: 10.1002/humu.24489. PubMed DOI PMC

Wolock C.J., Stong N., Ma C.J., Nagasaki T., Lee W., Tsang S.H., Kamalakaran S., Goldstein D.B., Allikmets R. A case-control collapsing analysis identifies retinal dystrophy genes associated with ophthalmic disease in patients with no pathogenic ABCA4 variants. Genet. Med. 2019;21:2336–2344. PubMed PMC

Runhart E.H., Sangermano R., Cornelis S.S., Verheij J.B.G.M., Plomp A.S., Boon C.J.F., Lugtenberg D., Roosing S., Bax N.M., Blokland E.A.W., et al. The Common ABCA4 Variant p.Asn1868Ile Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in trans With Severe Variants. Invest. Ophthalmol. Vis. Sci. 2018;59:3220–3231. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...