Synchrotron X-rays reveal the modes of Fe binding and trace metal storage in the brown algae Laminaria digitata and Ectocarpus siliculosus
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
37740572
PubMed Central
PMC10588612
DOI
10.1093/mtomcs/mfad058
PII: 7281006
Knihovny.cz E-resources
- Keywords
- XANES, algae, ferritin, iron, strontium, tomography,
- MeSH
- Ferritins metabolism MeSH
- Kelp * metabolism MeSH
- Laminaria * metabolism MeSH
- Minerals metabolism MeSH
- Phaeophyceae * metabolism MeSH
- X-Rays MeSH
- Trace Elements * metabolism MeSH
- Synchrotrons MeSH
- Iron metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Ferritins MeSH
- Minerals MeSH
- Trace Elements * MeSH
- Iron MeSH
Iron is accumulated symplastically in kelp in a non-ferritin core that seems to be a general feature of brown algae. Microprobe studies show that Fe binding depends on tissue type. The sea is generally an iron-poor environment and brown algae were recognized in recent years for having a unique, ferritin-free iron storage system. Kelp (Laminaria digitata) and the filamentous brown alga Ectocarpus siliculosus were investigated using X-ray microprobe imaging and nanoprobe X-ray fluorescence tomography to explore the localization of iron, arsenic, strontium, and zinc, and micro-X-ray absorption near-edge structure (μXANES) to study Fe binding. Fe distribution in frozen hydrated environmental samples of both algae shows higher accumulation in the cortex with symplastic subcellular localization. This should be seen in the context of recent ultrastructural insight by cryofixation-freeze substitution that found a new type of cisternae that may have a storage function but differs from the apoplastic Fe accumulation found by conventional chemical fixation. Zn distribution co-localizes with Fe in E. siliculosus, whereas it is chiefly located in the L. digitata medulla, which is similar to As and Sr. Both As and Sr are mostly found at the cell wall of both algae. XANES spectra indicate that Fe in L. digitata is stored in a mineral non-ferritin core, due to the lack of ferritin-encoding genes. We show that the L. digitata cortex contains mostly a ferritin-like mineral, while the meristoderm may include an additional component.
Department of Chemistry and Biochemistry San Diego State University CA 92182 1030 USA
European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
Marine Biodiscovery Centre Department of Chemistry University of Aberdeen Aberdeen AB24 3UE UK
See more in PubMed
Butler A., Acquisition and utilization of transition metal ions by marine organisms, Science, 1998, 281 (5374), 207–209. 10.1126/science.281.5374.207 PubMed DOI
Andrews S. C., Harrison P. M., Yewdall S. J., Arosio P., Levi S., Bottke W., von Darl M., Briat J.-F., Laulhère J.-P., Lobreaux S., Structure, function, and evolution of ferritins, J. Inorg. Biochem., 1992, 47 (1), 161–174. 10.1016/0162-0134(92)84062-R PubMed DOI
Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J., Ferritin: design and formation of an iron-storage molecule, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1984, 304(1121), 551–565. PubMed
Harrison P., Lilley T., In: TM Loehr (ed.), Iron Carriers and Iron Proteins (Physical Bioinorganic Chemistry Series), Vol. 5, VCH, Weinheim: Cambridge NY, 1989, 123–28.
Cock J. M., Sterck L., Rouzé P., Scornet D., Allen A. E., Amoutzias G., Anthouard V., Artiguenave F., Aury J.-M., Badger J. H., Beszteri B., Billiau K., Bonnet E., Bothwell J. H., Bowler C., Boyen C., Brownlee C., Carrano C. J., Charrier B., Cho G. Y., Coelho S. M., Collén J., Corre E., Da Silva C., Delage L., Delaroque N., Dittami S. M., Doulbeau S., Elias M., Farnham G., Gachon C. M. M., Gschloessl B., Heesch S., Jabbari K., Jubin C., Kawai H., Kimura K., Kloareg B., Küpper F. C., Lang D., Le Bail A., Leblanc C., Lerouge P., Lohr M., Lopez P. J., Martens C., Maumus F., Michel G., Miranda-Saavedra D., Morales J., Moreau H., Motomura T., Nagasato C., Napoli C. A., Nelson D. R., Nyvall-Collén P., Peters A. F., Pommier C., Potin P., Poulain J., Quesneville H., Read B., Rensing S. A., Ritter A., Rousvoal S., Samanta M., Samson G., Schroeder D. C., Ségurens B., Strittmatter M., Tonon T., Tregear J. W., Valentin K., von Dassow P., Yamagishi T., Van de Peer Y., Wincker P., The Ectocarpus genome and the independent evolution of multicellularity in brown algae, Nature, 2010, 465 (7298), 617–621. 10.1038/nature09016 PubMed DOI
Baldauf S. L., The deep roots of eukaryotes, Science, 2003, 300 (5626), 1703–1706. 10.1126/science.1085544 PubMed DOI
Armbrust E. V., Berges J. A., Bowler C., Green B. R., Martinez D., Putnam N. H., Zhou S., Allen A. E., Apt K. E., Bechner M., Brzezinski M. A., Chaal B. K., Chiovitti A., Davis A. K., Demarest M. S., Detter J. C., Glavina T., Goodstein D., Hadi M. Z., Hellsten U., Hildebrand M., Jenkins B. D., Jurka J., Kapitonov V. V., Kröger N., Lau W. W. Y., Lane T. W., Larimer F. W., Lippmeier J. C., Lucas S., Medina M., Montsant A., Obornik M., Parker M. S., Palenik B., Pazour G. J., Richardson P. M., Rynearson T. A., Saito M. A., Schwartz D. C., Thamatrakoln K., Valentin K., Vardi A., Wilkerson F. P., Rokhsar D. S., The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism, Science, 2004, 306 (5693), 79–86. 10.1126/science.1101156 PubMed DOI
Cock J. M., Sterck L., Ahmed S., Allen A. E., Amoutzias G., Anthouard V., Artiguenave F., Arun A., Aury J.-M., Badger J. H., Beszteri B., Billiau K., Bonnet E., Bothwell J. H., Bowler C., Boyen C., Brownlee C., Carrano C. J., Charrier B., Cho G. Y., Coelho S. M., Collén J., Le Corguillé G., Corre E., Dartevelle L., Da Silva C., Delage L., Delaroque N., Dittami S. M., Doulbeau S., Elias M., Farnham G., Gachon C. M. M., Godfroy O., Gschloessl B., Heesch S., Jabbari K., Jubin C., Kawai H., Kimura K., Kloareg B., Küpper F. C., Lang D., Le Bail A., Luthringer R., Leblanc C., Lerouge P., Lohr M., Lopez P. J., Macaisne N., Martens C., Maumus F., Michel G., Miranda-Saavedra D., Morales J., Moreau H., Motomura T., Nagasato C., Napoli C. A., Nelson D. R., Nyvall-Collén P., Peters A. F., Pommier C., Potin P., Poulain J., Quesneville H., Read B., Rensing S. A., Ritter A., Rousvoal S., Samanta M., Samson G., Schroeder D. C., Scornet D., Ségurens B., Strittmatter M., Tonon T., Tregear J. W., Valentin K., Von Dassow P., Yamagishi T., Rouzé P., Van de Peer Y., Wincker P, Chapter 5: The Ectocarpus genome and brown algal genomics: the Ectocarpus Genome Consortium. In: Piganeau, G (ed.), Genomic Insights into the Biology of Algae, Advances in Botanical Research, Vol. 64. Academic Press, Cambridge MA, USA, 2012, 141–84. 10.1016/B978-0-12-391499-6.00005-0 DOI
Marchetti A., Parker M. S., Moccia L. P., Lin E. O., Arrieta A. L., Ribalet F., Murphy M. E. P., Maldonado M. T., Armbrust E. V., Ferritin is used for iron storage in bloom-forming marine pennate diatoms, Nature, 2009, 457 (7228), 467–470. 10.1038/nature07539 PubMed DOI
Böttger L. H., Miller E. P., Andresen C., Matzanke B. F., Küpper F. C., Carrano C. J., Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus, J. Exp. Bot., 2012, 63 (16), 5763–5772. 10.1093/jxb/ers225 PubMed DOI PMC
Behnke J., LaRoche J., Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs), Eur. J. Phycol., 2020, 55 (3), 339–360. 10.1080/09670262.2020.1744039 DOI
Hartnett A., Böttger L. H., Matzanke B. F., Carrano C. J., Iron transport and storage in the coccolithophore: emiliania huxleyi, Metallomics, 2012, 4 (11), 1160. 10.1039/c2mt20144e PubMed DOI
Mijovilovich A., Mishra A., Brückner D., Spiers K., Andresen E., Garrevoet J., Falkenberg G., Küpper H., Micro X-ray absorption near edge structure tomography reveals cell-specific changes of Zn ligands in leaves of turnip yellow mosaic virus infected plants, Spectrochim. Acta. Part B, 2019, 157 (A1–A2), 53–62. 10.1016/j.sab.2019.05.005 DOI
Mishra S., Wellenreuther G., Mattusch J., Stärk H.-J., Küpper H., Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum, Plant Physiol., 2013, 163 (3), 1396–1408. 10.1104/pp.113.224303 PubMed DOI PMC
Jin Q., Paunesku T., Lai B., Gleber S.-C., Chen S., Finney L., Vine D., Vogt S., Woloschak G., Jacobsen C., Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based X-ray fluorescence microscopy, J. Microsc., 2017, 265 (1), 81–93. 10.1111/jmi.12466 PubMed DOI PMC
Davis T. A., Volesky B., Mucci A., A review of the biochemistry of heavy metal biosorption by brown algae, Water Res., 2003, 37 (18), 4311–4330. 10.1016/S0043-1354(03)00293-8 PubMed DOI
Weinhausen B., Saldanha O., Wilke R. N., Dammann C., Priebe M., Burghammer M., Sprung M., Köster S., Scanning X-ray nanodiffraction on living eukaryotic cells in microfluidic environments, Phys. Rev. Lett., 2014, 112 (8), 88102. 10.1103/PhysRevLett.112.088102 DOI
Hartnett A., Böttger L. H., Matzanke B. F., Carrano C. J., A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica, J. Inorg. Biochem., 2012, 116 (November), 188–194. 10.1016/j.jinorgbio.2012.06.009 PubMed DOI
Küpper F. C., Miller E. P., Andrews S. J., Hughes C., Carpenter L. J., Meyer-Klaucke W., Toyama C., Muramatsu Y., Feiters M. C., Carrano C. J., Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus, J. Biol. Inorg. Chem., 2018, 23 (7), 1119–1128. 10.1007/s00775-018-1539-7 PubMed DOI
Miller E. P., Böttger L. H., Weerasinghe A. J., Crumbliss A. L., Matzanke B. F., Meyer-Klaucke W., Küpper F. C., Carrano C. J., Surface-bound iron: a metal ion buffer in the marine brown alga Ectocarpus siliculosus?, EXBOTJ, 2014, 65 (2), 585–594. 10.1093/jxb/ert406 PubMed DOI PMC
Katsaros C., Panse S. L., Milne G., Carrano C. J., Küpper F. C., New insights on Laminaria digitata ultrastructure through combined conventional chemical fixation and cryofixation, Bot. Mar., 2021, 64 (3), 177–187. 10.1515/bot-2021-0005 DOI
Ashraf N., Vítová M., Cloetens P., Mijovilovich A., Bokhari S. N. H., Küpper H., Effect of nanomolar concentrations of lanthanum on Desmodesmus quadricauda cultivated under environmentally relevant conditions, Aquat. Toxicol., 2021, 235:105818. 10.1016/j.aquatox.2021.105818 PubMed DOI
Küpper H., Zhao F. J., McGrath S. P., Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens, Plant Physiol., 1999, 119 (1), 305–312. 10.1104/pp.119.1.305 PubMed DOI PMC
da Silva J. C., Pacureanu A., Yang Y., Bohic S., Morawe C., Barrett R., Cloetens P., Efficient concentration of high-energy X-rays for diffraction-limited imaging resolution, Optica, 2017, 4:(5), 492–495. 10.1364/OPTICA.4.000492 DOI
Aarle W. v., Palenstijn W. J., Cant J., Janssens E., Bleichrodt F., Dabravolski A., Beenhouwer J. D., Batenburg K. J., Sijbers J, Fast and flexible X-ray tomography using the ASTRA toolbox, Opt. Express, 2016, 24 (22), 25129–25147. 10.1364/OE.24.025129 PubMed DOI
Solé V. A., Papillon E., Cotte M., Walter P. h, Susini J., A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochim. Acta. Part B, 2007, 62 (1), 63–68. 10.1016/j.sab.2006.12.002 DOI
Mokso R., Cloetens P., Maire E., Ludwig W., Buffière J.-Y, Nanoscale zoom tomography with hard X rays using Kirkpatrick–Baez optics, Appl. Phys. Lett., 2007, 90 (14), 144104. 10.1063/1.2719653 DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: an open-source platform for biological-image analysis, Nat. Methods, 2012, 9 (7), 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Obbard R. W., Lieb-Lappen R. M., Nordick K. V., Golden E. J., Leonard J. R., Lanzirotti A., Newville M. G., Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice, Earth Space Sci., 2016, 3 (11), 463–479. 10.1002/2016EA000172 DOI
Newville M., Larch: an analysis package for XAFS and related spectroscopies, J. Phys. Conf. Ser., 2013, 430:012007. 10.1088/1742-6596/430/1/012007 DOI
Ravel B., Newville M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 2005, 12 (4), 537–541. 10.1107/S0909049505012719 PubMed DOI
Pattammattel A., Tappero R., Gavrilov D., Zhang H., Aronstein P., Forman H. J., O'Day P. A., Yan H., Chu Y. S, Multimodal X-ray nano-spectromicroscopy analysis of chemically heterogeneous systems, Metallomics, 2022, 14 (10), mfac078. 10.1093/mtomcs/mfac078 PubMed DOI PMC
Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 2004, 13 (4), 600–612. 10.1109/TIP.2003.819861 PubMed DOI
Mijovilovich A., Delta-mu XANES reveals the electronic structure of the adsorption of propene on gold nanoparticles, RSC Adv., 2014, 4 (24), 12293–12297. 10.1039/C3RA47209D DOI
Nijhuis T. A., Sacaliuc E., Beale A. M., van der Eerden A. M. J., Schouten J. C., Weckhuysen B. M., Spectroscopic evidence for the adsorption of propene on gold nanoparticles during the hydro-epoxidation of propene, J. Catal., 2008, 258 (1), 256–264. 10.1016/j.jcat.2008.06.020 DOI
Haug A., Smidsrød O., Strontium, calcium and magnesium in brown algae, Nature, 1967, 215 (5106), 1167–1168. 10.1038/2151167a0 PubMed DOI
Ender E., Subirana M. A., Raab A., Krupp E. M., Schaumlöffel D., Feldmann J., Why is nanoSIMS elemental imaging of arsenic in seaweed (Laminaria digitata) important for understanding of arsenic biochemistry in addition to speciation information?, J. Anal. At. Spectrom., 2019, 34 (11), 2295–2302. 10.1039/C9JA00187E DOI