Update on Anticoagulation Strategies in Patients with ECMO-A Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37763010
PubMed Central
PMC10532142
DOI
10.3390/jcm12186067
PII: jcm12186067
Knihovny.cz E-zdroje
- Klíčová slova
- COVID, ECMO, anticoagulation, anticoagulation target, coagulation monitoring, heparin, low-molecular-weight heparin,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The use of extracorporeal membrane oxygenation (ECMO) has recently increased exponentially. ECMO has become the preferred mode of organ support in refractory respiratory or circulatory failure. The fragile balance of haemostasis physiology is massively altered by the patient's critical condition and specifically the aetiology of the underlying disease. Furthermore, an application of ECMO conveys another disturbance of haemostasis due to blood-circuit interaction and the presence of an oxygenator. The purpose of this review is to summarise current knowledge on the anticoagulation management in patients undergoing ECMO therapy. The unfractionated heparin modality with monitoring of activated partial thromboplastin tests is considered to be a gold standard for anticoagulation in this specific subgroup of intensive care patients. However, alternative modalities with other agents are comprehensively discussed. Furthermore, other ways of monitoring can represent the actual state of coagulation in a more complex fashion, such as thromboelastometric/graphic methods, and might become more frequent. In conclusion, the coagulation system of patients with ECMO is altered by multiple variables, and there is a significant lack of evidence in this area. Therefore, a highly individualised approach is the best solution today.
Department of Anaesthesia Antrim Area Hospital Antrim BT41 2RL UK
Department of Anaesthesia Golden Jubilee University National Hospital Clydebank G81 4DY UK
Emergency Service of Central Bohemia Vančurova 1544 27201 Kladno Czech Republic
Zobrazit více v PubMed
Ratnani I., Tuazon D., Zainab A., Uddin F. The Role and Impact of Extracorporeal Membrane Oxygenation in Critical Care. Methodist DeBakey Cardiovasc. J. 2018;14:110–119. doi: 10.14797/mdcj-14-2-110. PubMed DOI PMC
Aljishi R.S., Alkuaibi A.H., Al Zayer F.A., Al Matouq A.H. Extracorporeal Membrane Oxygenation for COVID-19: A Systematic Review. Cureus. 2022;14:e27522. doi: 10.7759/cureus.27522. PubMed DOI PMC
Makdisi G., Wang I.-W. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J. Thorac. Dis. 2015;7:E166–E176. doi: 10.3978/j.issn.2072-1439.2015.07.17. PubMed DOI PMC
Organisation ELS ELSO Guidelines. 2020. [(accessed on 25 May 2023)]. Available online: https://wwwelsoorg/ecmo-resources/elso-ecmoguidelinesaspx.
Squiers J.J., Lima B., DiMaio J.M. Contemporary extracorporeal membrane oxygenation therapy in adults: Fundamental principles and systematic review of the evidence. J. Thorac. Cardiovasc. Surg. 2016;152:20–32. doi: 10.1016/j.jtcvs.2016.02.067. PubMed DOI
Sanivarapu R.R., Osman U., Kumar A.L. A Systematic Review of Mortality Rates Among Adult Acute Respiratory Distress Syndrome Patients Undergoing Extracorporeal Membrane Oxygenation Therapy. Cureus. 2023;15:e43590. doi: 10.7759/cureus.43590. PubMed DOI PMC
El Sibai R., Bachir R., El Sayed M. ECMO use and mortality in adult patients with cardiogenic shock: A retrospective observational study in U.S. hospitals. BMC Emerg. Med. 2018;18:20. doi: 10.1186/s12873-018-0171-8. PubMed DOI PMC
Olson S.R., Murphree C.R., Zonies D., Meyer A.D., Mccarty O.J.T., Deloughery T.G., Shatzel J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2020;67:290–296. doi: 10.1097/MAT.0000000000001230. PubMed DOI PMC
Mulder M.M.G., Fawzy I., Lancé M.D. ECMO and anticoagulation: A comprehensive review. Neth. J. Crit. Care. 2018;26:6–13.
Nunez J.I., Gosling A.F., O’gara B., Kennedy K.F., Rycus P., Abrams D., Brodie D., Shaefi S., Garan A.R., Grandin E.W. Bleeding and thrombotic events in adults supported with venovenous extracorporeal membrane oxygenation: An ELSO registry analysis. Intensive Care Med. 2021;48:213–224. doi: 10.1007/s00134-021-06593-x. PubMed DOI PMC
McMichael A.B., Ryerson L.M., Ratano D., Fan E., Faraoni D., Annich G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022;68:303–310. doi: 10.1097/MAT.0000000000001652. PubMed DOI
Burša F., Sklienka P., Frelich M., Jor O., Ekrtová T., Máca J. Anticoagulation Management during Extracorporeal Membrane Oxygenation—A Mini-Review. Medicina. 2022;58:1783. doi: 10.3390/medicina58121783. PubMed DOI PMC
Karagiannidis C., Windisch W., Bein T. Rapid Changes in Arterial Carbon Dioxide Levels Caused by Extracorporeal Membrane Oxygenation. The Temptation of a Fascinating Technology. Am. J. Respir. Crit. Care Med. 2020;201:1466–1468. doi: 10.1164/rccm.202004-1060ED. PubMed DOI PMC
Abruzzo A., Gorantla V., Thomas S.E. Venous thromboembolic events in the setting of extracorporeal membrane oxy-genation support in adults: A systematic review. Thromb. Res. 2022;212:58–71. doi: 10.1016/j.thromres.2022.02.015. PubMed DOI
Yusuff H., Zochios V., Brodie D. Thrombosis and coagulopathy in COVID-19 patients rceiving ECMO: A narrative review of current literature. J. Cardiothorac. Vasc. Anesth. 2022;36:3312–3317. doi: 10.1053/j.jvca.2022.03.032. PubMed DOI PMC
Bonaventura A., Vecchié A., Dagna L., Martinod K., Dixon D.L., Van Tassell B.W., Dentali F., Montecucco F., Massberg S., Levi M., et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021;21:319–329. doi: 10.1038/s41577-021-00536-9. PubMed DOI PMC
Aliter K.F., Al-Horani R.A. Thrombin Inhibition by Argatroban: Potential Therapeutic Benefits in COVID-19. Cardiovasc. Drugs Ther. 2020;35:195–203. doi: 10.1007/s10557-020-07066-x. PubMed DOI PMC
Zuo Y., Warnock M., Harbaugh A., Yalavarthi S., Gockman K., Zuo M., Madison J.A., Knight J.S., Kanthi Y., Lawrence D.A. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci. Rep. 2021;11:1580. doi: 10.1038/s41598-020-80010-z. PubMed DOI PMC
Conway E.M., Mackman N., Warren R.Q., Wolberg A.S., Mosnier L.O., Campbell R.A., Gralinski L.E., Rondina M.T., van de Veerdonk F.L., Hoffmeister K.M., et al. Understanding COVID-19-associated coagulopathy. Nat. Rev. Immunol. 2022;22:639–649. doi: 10.1038/s41577-022-00762-9. PubMed DOI PMC
Mansour A., Flecher E., Schmidt M., Rozec B., Gouin-Thibault I., Esvan M., Fougerou C., Levy B., Porto A., Ross J.T., et al. Bleeding and thrombotic events in patients with severe COVID-19 supported with extracorporeal membrane oxygenation: A nationwide cohort study. Intensive Care Med. 2022;48:1039–1052. doi: 10.1007/s00134-022-06794-y. PubMed DOI
Fanning J.P., Weaver N., Fanning R.B., Griffee M.J., Cho S.-M., Panigada M., Obonyo N.G., Zaaqoq A.M., Rando H., Chia Y.W., et al. Hemorrhage, Disseminated Intravascular Coagulopathy, and Thrombosis Complications Among Critically Ill Patients with COVID-19: An International COVID-19 Critical Care Consortium Study. Crit. Care Med. 2023;51:619–631. doi: 10.1097/CCM.0000000000005798. PubMed DOI PMC
Lannon M., Duda T., Greer A., Hewitt M., Sharma A., Martyniuk A., Owen J., Amin F., Sharma S. Intracranial hemorrhage in patients treated for SARS-CoV-2 with extracorporeal membrane oxygenation: A systematic review and meta-analysis. J. Crit. Care. 2023;77:154319. doi: 10.1016/j.jcrc.2023.154319. PubMed DOI PMC
Jin Y., Zhang Y., Liu J., Zhou Z. Thrombosis and bleeding in patients with COVID-19 requiring extracorporeal membrane oxygenation: A systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 2023;7:100103. doi: 10.1016/j.rpth.2023.100103. PubMed DOI PMC
Shekar K., Badulak J., Peek G., Boeken U., Dalton H.J., Arora L., Zakhary B., Ramanathan K., Starr J., Akkanti B., et al. Extracorporeal life support organization COVID-19 interim Guidelines. Asaio J. Am. Soc. Artif. Intern. Organs. 2000;66:707–721. doi: 10.1097/MAT.0000000000001193. PubMed DOI PMC
Mancini I., Baronciani L., Artoni A., Colpani P., Biganzoli M., Cozzi G., Novembrino C., Anzoletti M.B., De Zan V., Pagliari M.T., et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J. Thromb. Haemost. 2020;19:513–521. doi: 10.1111/jth.15191. PubMed DOI PMC
Kalbhenn J., Glonnegger H., Wilke M., Bansbach J., Zieger B. Hypercoagulopathy, acquired coagulation disorders and anticoagulation before, during and after extracorporeal membrane oxygenation in COVID-19: A case series. Perfusion. 2021;36:592–602. doi: 10.1177/02676591211001791. PubMed DOI
Boira I., Esteban V., Vañes S., Castelló C., Celis C., Chiner E. Major Bleeding Complications in COVID-19 Patients. Cureus. 2021;13:e16816. doi: 10.7759/cureus.16816. PubMed DOI PMC
McAlpine L.S., Zubair A.S., Maran I., Chojecka P., Lleva P., Jasne A.S., Navaratnam D., Matouk C., Schindler J., Sheth K.N., et al. Ischemic Stroke, Inflammation, and Endotheliopathy in COVID-19 Patients. Stroke. 2021;52:e233–e238. doi: 10.1161/STROKEAHA.120.031971. PubMed DOI PMC
Bemtgen X., Zotzmann V., Benk C., Rilinger J., Steiner K., Asmussen A., Bode C., Wengenmayer T., Maier S., Staudacher D.L. Thrombotic circuit complications during veno-venous extracorporeal membrane oxygenation in COVID-19. J. Thromb. Thrombolysis. 2021;51:301–307. doi: 10.1007/s11239-020-02217-1. PubMed DOI PMC
Spiess B.D., Armour S., Horrow J., Kaplan J.A., Koch C.G., Karkouti K., Body S.C. Chapter 27—Transfusion Medicine and Coagulation Disorders. In: Kaplan J.A., editor. Kaplan’s Essentials of Cardiac Anesthesia. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 685–714.
Devlin A., Mycroft-West C., Procter P., Cooper L., Guimond S., Lima M., Yates E., Skidmore M. Tools for the Quality Control of Pharmaceutical Heparin. Medicina. 2019;55:636. doi: 10.3390/medicina55100636. PubMed DOI PMC
Esper S.A., Welsby I.J., Subramaniam K., Wallisch W.J., Levy J.H., Waters J.H., Triulzi D.J., Hayanga J.W.A., Schears G.J. Adult extracorporeal membrane oxygenation: An international survey of transfusion and anticoagulation techniques. Vox Sang. 2017;112:443–452. doi: 10.1111/vox.12514. PubMed DOI
Bojar R.M. Manual of Perioperative Care in Adult Cardiac Surgery. John Wiley & Sons; Hoboken, NJ, USA: 2020. DOI
Chlebowski M.M., Baltagi S., Carlson M., Levy J.H., Spinella P.C. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit. Care. 2020;24:19. doi: 10.1186/s13054-020-2726-9. PubMed DOI PMC
Dalton H., Martin M., Garcia-Filion P., Shavelle D., Huang P.-H., Clark J., Beinart S., Israel A., Korpi-Steiner N. Activated clotting time in inpatient diagnostic and interventional settings. J. Thromb. Thrombolysis. 2022;54:660–668. doi: 10.1007/s11239-022-02672-y. PubMed DOI PMC
Toulon P., Smahi M., De Pooter N. APTT therapeutic range for monitoring unfractionated heparin therapy. Significant impact of the anti-Xa reagent used for correlation. J. Thromb. Haemost. 2021;19:2002–2006. doi: 10.1111/jth.15264. PubMed DOI
Smythe M.A., Koerber J.M., Nowak S.N., Mattson J.C., Begle R.L., Westley S.J., Balasubramaniam M. Correlation between Activated Clotting Time and Activated Partial Thromboplastin Times. Ann. Pharmacother. 2002;36:7–11. doi: 10.1345/aph.1A141. PubMed DOI
Panigada M., EIapichino G., Brioni M., Panarello G., Protti A., Grasselli G., Occhipinti G., Novembrino C., Consonni D., Arcadipane A., et al. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: A safety and feasibility pilot study. Ann. Intensive Care. 2018;8:7. doi: 10.1186/s13613-017-0352-8. PubMed DOI PMC
Henderson N., Sullivan J.E., Myers J., Wells T., Calhoun A., Berkenbosch J., Tzanetos D.T. Use of thromboelastography to predict thrombotic complications in pediatric and neonatal extracorporeal membranous oxygenation. J. Extra-Corpor. Technol. 2018;50:149–154. doi: 10.1051/ject/201850149. PubMed DOI PMC
van de Wetering J., Westendorp R.G., van der Hoeven J.G., Stolk B., Feuth J.D., Chang P.C. Heparin use in continuous renal replacement procedures. J. Am. Soc. Nephrol. 1996;7:145–150. doi: 10.1681/ASN.V71145. PubMed DOI
Nguyen T.P., Phan X.T., Nguyen T.H., Huynh D.Q., Tran L.T., Pham H.M., Nguyen T.N., Kieu H.T., Pham T.T.N. Major Bleeding in Adults Undergoing Peripheral Extracorporeal Membrane Oxygenation (ECMO): Prognosis and Predictors. Crit. Care Res. Pract. 2022;2022:5348835. doi: 10.1155/2022/5348835. PubMed DOI PMC
Durrani J., Malik F., Ali N., Jafri S.I.M. To be or not to be a case of heparin resistance. J. Community Hosp. Intern. Med. Perspect. 2018;8:145–148. doi: 10.1080/20009666.2018.1466599. PubMed DOI PMC
Chen Y., Phoon P.H.Y., Hwang N.C. Heparin Resistance During Cardiopulmonary Bypass in Adult Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2022;36:4150–4160. doi: 10.1053/j.jvca.2022.06.021. PubMed DOI PMC
Novelli C., Borotto E., Beverina I., Punzi V., Radrizzani D., Brando B. Heparin dosage, level, and resistance in SARS-CoV2 infected patients in intensive care unit. Int. J. Lab. Hematol. 2021;43:1284–1290. doi: 10.1111/ijlh.13543. PubMed DOI PMC
Kleinschmidt K., Charles R. Pharmacology of low molecular weight harparins. Emerg. Med. Clin. North Am. 2001;19:1025–1049. doi: 10.1016/S0733-8627(05)70233-9. PubMed DOI
PubChem [Internet] Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 2004-. PubChem Compound Summary for CID 5282448, Fondaparinux. [(accessed on 13 May 2023)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fondaparinux.
Toschi V., Lettino M. Fondaparinux: Pharmacology and clinical experience in cardiovascular medicine. Mini-Rev. Med. Chem. 2007;7:383–387. doi: 10.2174/138955707780363819. PubMed DOI
Martel N., Lee J., Wells P.S. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: A meta-analysis. Blood. 2005;106:2710–2715. doi: 10.1182/blood-2005-04-1546. PubMed DOI
Solari F., Varacallo M. StatPearl. StatPearls; Treasure Island, FL, USA: 2023. Low Molecular Weight Heparin (LMWH) PubMed
Hirsh J., Warkentin T.E., Shaughnessy S.G., Anand S.S., Halperin J.L., Raschke R., Granger C., Ohman E.M., Dalen J.E. Heparin and Low-Molecular-Weight Heparin Mechanisms of Action, Pharmacokinetics, Dosing, Monitoring, Efficacy, and Safety. Chest. 2001;119:64S–94S. doi: 10.1378/chest.119.1_suppl.64S. PubMed DOI
Cihlar R., Sramek V., Papiez A., Penka M., Suk P. Pharmacokinetic Comparison of Subcutaneous and Intravenous Nadroparin Administration for Thromboprophylaxis in Critically Ill Patients on Vasopressors. Pharmacology. 2019;105:73–78. doi: 10.1159/000502847. PubMed DOI
Dörffler-Melly J., de Jonge E., de Pont A.-C., Meijers J., Vroom M.B., Büller H.R., Levi M. Bioavailability of subcutaneous low-molecular-weight heparin to patients on vasopressors. Lancet. 2002;359:849–850. doi: 10.1016/S0140-6736(02)07920-5. PubMed DOI
Krueger K., Schmutz A., Zieger B., Kalbhenn J. Venovenous Extracorporeal Membrane Oxygenation with Prophylactic Subcutaneous Anticoagulation Only: An Observational Study in More Than 60 Patients. Artif. Organs. 2016;41:186–192. doi: 10.1111/aor.12737. PubMed DOI
Kurihara C., Walter J.M., Karim A., Thakkar S., Saine M., Odell D.D., Kim S., Tomic R., Wunderink R.G., Budinger G.R.S., et al. Feasibility of Venovenous Extracorporeal Membrane Oxygenation Without Systemic Anticoagulation. Ann. Thorac. Surg. 2020;110:1209–1215. doi: 10.1016/j.athoracsur.2020.02.011. PubMed DOI PMC
Aubron C., McQuilten Z., Bailey M., Board J., Buhr H., Cartwright B., Dennis M., Hodgson C., Forrest P., McIlroy D., et al. Low-Dose Versus Therapeutic Anticoagulation in Patients on Extracorporeal Membrane Oxygenation: A Pilot Randomized Trial. Crit. Care Med. 2019;47:e563–e571. doi: 10.1097/CCM.0000000000003780. PubMed DOI
Beitland S., Sandven I., Kjærvik L.K., Sandset P.M., Sunde K., Eken T. Thromboprophylaxis with low molecular weight heparin versus unfractioned heparin in intensive care patients: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2015;41:1209–1219. doi: 10.1007/s00134-015-3840-z. PubMed DOI
PROTECT Investigators for the Canadian Critical Care Trials Group The Australian and New Zealand Intensive Care Society Clinical Trials Group Dalteparin versus unfractionated heparin in critically ill patients. N. Engl. J. Med. 2011;364:1305–1314. doi: 10.1056/NEJMoa1014475. PubMed DOI
De A., Roy P., Garg V.K., Pandey N.K. Low-molecular-weight heparin and unfractioned heparin in prophylaxis against deep vein thrombosis in critically ill patients undergoing major surgery. Blood Coagul. Fibrinolysis. 2010;21:57–61. doi: 10.1097/MBC.0b013e3283333505. PubMed DOI
Pon T.K., Dager W.E., Roberts A.J., White R.H. Subcutaneous Enoxaparin for Therapeutic Anticoagulation in Hemodialysis Patients. Thromb. Res. 2014;133:1023–1028. doi: 10.1016/j.thromres.2014.03.036. PubMed DOI
Ucar E.Y., Akgun M., Araz O., Tas H., Kerget B., Meral M., Kaynar H., Saglam L. Comparison of LMWH Versus UFH for Hemorrhage and Hospital Mortality in the Treatment of Acute Massive Pulmonary Thromboembolism after Thrombolytic Treatment. Lung. 2014;193:121–127. doi: 10.1007/s00408-014-9660-z. PubMed DOI
Merli G., Spiro T.E., Olsson C.G., Abildgaard U., Davidson B.L., Eldor A., Elias D., Grigg A., Musset D., Rodgers G.M., et al. Subcutaneous enoxaparin once or twice daily compared with intravenous unfractioned heparin for treatment of venous thromboembolic disease. Ann. Intern. Med. 2001;134:191–202. doi: 10.7326/0003-4819-134-3-200102060-00009. PubMed DOI
Johnson P.N., Benefield E.C., Bui P.-Y.N., Gausman J.N., Marlar R.A., Gessouroun M.R. Fondaparinux Monitoring: Need for a Local Fondaparinux-Calibrated Anti–F actor Xa Assay. J. Pediatr. Pharmacol. Ther. 2013;18:318–319. doi: 10.5863/1551-6776-18.4.318. PubMed DOI PMC
Gratz J., Pausch A., Schaden E., Baierl A., Jaksch P., Erhart F., Hoetzenecker K., Wiegele M. Low molecular weight heparin versus unfractioned heparin for anticoagulation during perioperative extracorporeal membrane oxygenation: A single center experience in 102 lung transplant patients. Artif. Organs. 2020;44:638–646. doi: 10.1111/aor.13642. PubMed DOI PMC
Pavoni V., Gianesello L., Conti D., Ballo P., Dattolo P., Prisco D., Görlinger K. “In Less than No Time”: Feasibility of Rotational Thromboelastometry to Detect Anticoagulant Drugs Activity and to Guide Reversal Therapy. J. Clin. Med. 2022;11:1407. doi: 10.3390/jcm11051407. PubMed DOI PMC
Parlar A.I., Sayar U., Cevirme D., Yuruk M.A., Mataraci I. Successful Use of Fondaparinux in a Patient with Heparin-induced Thrombocytopenia while on Extracorporeal Membrane Oxygenation after Mitral Valve Redo Surgery. Int. J. Artif. Organs. 2014;37:344–347. doi: 10.5301/ijao.5000302. PubMed DOI
Degani A., Milanesi E., Rossini B., Ricccardi M.C., Pellegrini C., Doronzo F., Piscione V., Pelenghi S., Belliato M. Case report: Use of subcutaneous Fondaparinux in a COVID 19 patient with heparin-induced thrombocytopenia during venous-venous ECMO. Perfusion. 2021;36((Suppl. 1)):46–47.
Rychlíčková J., Šrámek V., Suk P. Use of fondaparinux in patients with heparin-induced thrombocytopenia on veno-venous extracorporeal membrane oxygenation: A three-patient case series report. Front. Med. 2023;10:1112770. doi: 10.3389/fmed.2023.1112770. PubMed DOI PMC
Jiritano F., Serraino G.F., Ten Cate H., Fina D., Matteucci M., Mastroroberto P., Lorusso R. Platelets and extra-corporeal membrane oxygenation in adult patients: A systematic review and meta-analysis. Intensive Care Med. 2020;46:1154–1169. doi: 10.1007/s00134-020-06031-4. PubMed DOI PMC
Moreno-Duarte I., Ghadimi K. Heparin induced thrombocytopenia for the perioperative and critical care clinician. Curr. Anesthesiol. Rep. 2020;10:501–511. doi: 10.1007/s40140-020-00405-6. PubMed DOI PMC
Althaus K., Straub A., Häberle H., Rosenberger P., Hidiatov O., Hammer S., Nowak-Harnau S., Enkel S., Riessen R., Bakchoul T. Heparin-induced thrombocytopenia: Diagnostic challenges in intensive care patients especially with extracorporeal circulation. Thromb. Res. 2020;188:52–60. doi: 10.1016/j.thromres.2020.01.026. PubMed DOI
Hogan M., Berger J.S. Heparin-induced thrombocytopenia (HIT): Review of incidence, diagnosis, and management. Vasc. Med. 2020;25:160–173. doi: 10.1177/1358863X19898253. PubMed DOI
Páramo J.A., Lozano M.L., González-Porras J.R., Mateo J. Estado actual del diagnóstico y tratamiento de la trombocitopenia inducida por heparina (TIH) Med. Clin. 2021;158:82–89. doi: 10.1016/j.medcli.2021.05.020. PubMed DOI
Linkins L., Hu G., Warkentin T.E. Systematic review of fondaparinux for heparin-induced thrombocytopenia: When there are no randomized controlled trials. Res. Pract. Thromb. Haemost. 2018;2:678–683. doi: 10.1002/rth2.12145. PubMed DOI PMC
Di Nisio M., Middeldorp S., Büller H.R. Direct Thrombin Inhibitors. N. Engl. J. Med. 2005;353:1028–1040. doi: 10.1056/NEJMra044440. PubMed DOI
Stone G.W., Witzenbichler B., Guagliumi G., Peruga J.Z., Brodie B.R., Dudek D., Kornowski R., Hartmann F., Gersh B.J., Pocock S.J., et al. Bivalirudin during Primary PCI in Acute Myocardial Infarction. N. Engl. J. Med. 2008;358:2218–2230. doi: 10.1056/NEJMoa0708191. PubMed DOI
Van De Car D.A., Rao S.V., Ohman E.M. Bivalirudin: A review of the pharmacology and clinical application. Expert Rev. Cardiovasc. Ther. 2010;8:1673–1681. doi: 10.1586/erc.10.158. PubMed DOI
Van Cott E.M., Roberts A.J., Dager W.E. Laboratory monitoring of parenteral direct thrombin inhibitors. Semin. Thromb. Hemost. 2017;43:270–276. doi: 10.1055/s-0036-1597297. PubMed DOI
Helms J., Frere C., Thiele T., Tanaka K.A., Neal M.D., Steiner M.E., Connors J.M., Levy J.H. Anticoagulation in adult patients supported with extracorporeal membrane oxygenation: Guidance from the Scientific and Standardization Committees on Perioperative and Critical Care Haemostasis and Thrombosis of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2022;21:373–396. doi: 10.1016/j.jtha.2022.11.014. PubMed DOI
Snyder C.W., Goldenberg N.A., Nguyen A.T.H., Smithers C.J., Kays D.W. A perioperative bivalirudin anticoagulation protocol for neonates with congenital diaphragmatic hernia on extracorporeal membrane oxygenation. Thromb. Res. 2020;193:198–203. doi: 10.1016/j.thromres.2020.07.043. PubMed DOI
Beyer J.T., Lind S.E., Fisher S., Trujillo T.C., Wempe M.F., Kiser T.H. Evaluation of intravenous direct thrombin inhibitor monitoring tests: Correlation with plasma concentrations and clinical outcomes in hospitalized patients. J. Thromb. Thrombolysis. 2019;49:259–267. doi: 10.1007/s11239-019-01961-3. PubMed DOI
Preston T.J., Dalton H.J., Nicol K.K., Ferrall B.R., Miller J.C., Hayes D. Plasma Exchange on Venovenous Extracorporeal Membrane Oxygenation with Bivalirudin Anticoagulation. World J. Pediatr. Congenit. Heart Surg. 2014;6:119–122. doi: 10.1177/2150135114553476. PubMed DOI
Young G., Yonekawa K.E., Nakagawa P.A., Blain R.C., Lovejoy A.E., Nugent D.J. Recombinant activated factor VII effectively reverses the anticoagulant effects of heparin, enoxaparin, fondaparinux, argatroban, and bivalirudin ex vivo as measured using thromboelastography. Blood Coagul. Fibrinolysis. 2007;18:547–553. doi: 10.1097/MBC.0b013e328201c9a9. PubMed DOI
Ranucci M. Bivalirudin and post-cardiotomy ECMO: A word of caution. Crit. Care. 2012;16:427. doi: 10.1186/cc11314. PubMed DOI PMC
Pieri M., Agracheva N., Bonaveglio E., Greco T., De Bonis M., Covello R.D., Zangrillo A., Pappalardo F. Bivalirudin Versus Heparin as an Anticoagulant During Extracorporeal Membrane Oxygenation: A Case-Control Study. J. Cardiothorac. Vasc. Anesth. 2013;27:30–34. doi: 10.1053/j.jvca.2012.07.019. PubMed DOI
Kaseer H., Soto-Arenall M., Sanghavi D., Moss J., Ratzlaff R., Pham S., Guru P. Heparin vs bivalirudin anticoagulation for extracorporeal membrane oxygenation. J. Card. Surg. 2020;35:779–786. doi: 10.1111/jocs.14458. PubMed DOI
Macielak S., Burcham P., Whitson B., Abdel-Rasoul M., Rozycki A. Impact of anticoagulation strategy and agents on extracorporeal membrane oxygenation therapy. Perfusion. 2019;34:671–678. doi: 10.1177/0267659119842809. PubMed DOI
Rivosecchi R.M., Arakelians A.R., Ryan J., Murray H., Ramanan R., Gomez H., Phillips D.D., Sciortino C., Arlia P.M., Freeman D.C., et al. Comparison of Anticoagulation Strategies in Patients Requiring Venovenous Extracorporeal Membrane Oxygenation: Heparin Versus Bivalirudin. Crit. Care Med. 2021;49:1129–1136. doi: 10.1097/CCM.0000000000004944. PubMed DOI
Li D.-H., Sun M.-W., Zhang J.-C., Zhang C., Deng L., Jiang H. Is bivalirudin an alternative anticoagulant for extracorporeal membrane oxygenation (ECMO) patients? A systematic review and meta-analysis. Thromb. Res. 2021;210:53–62. doi: 10.1016/j.thromres.2021.12.024. PubMed DOI
Ahmad S., Ahsan A., George M., Iqbal O., Jeske W.P., McKenna R., Lewis B.E., Walenga J.M., Fareed J. Simultaneous monitoring of argatroban and its major metabolite using an HPLC method: Potential clinical applications. Clin. Appl. Thromb./Hemost. 1999;5:252–258. doi: 10.1177/107602969900500409. PubMed DOI
Swan S.K., Hursting M.J. The pharmacokinetics and pharmacodynamics of argatroban: Effects of age, ender, and hepatic or renal dysfunction. Pharmacotherapy. 2000;20:318–329. doi: 10.1592/phco.20.4.318.34881. PubMed DOI
McKeage K., Plosker G.L. Argatroban. Drugs. 2001;61:515–522; discussion 523–514. doi: 10.2165/00003495-200161040-00005. PubMed DOI
Beiderlinden M., Treschan T., Gorlinger K., Peters J. Argatroban in extracorporeal membrane oxygenation. Artif. Organs. 2007;31:461–465. doi: 10.1111/j.1525-1594.2007.00388.x. PubMed DOI
Dolch M.E., Frey L., Hatz R., Uberfuhr P.A., Beiras-Fernandez A., Behr J., Irlbeck M. Lung Transplant Group TM: Extracorporeal membrane oxygenation bridging to lung transplant complicated by heparin-induced thrombocytopenia. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant. 2010;8:329–332. PubMed
Saugel B., Phillip V., Moessmer G., Schmid R.M., Huber W. Argatroban therapy for heparin-induced thrombocytopenia in ICU patients with multiple organ dysfunction syndrome: A retrospective study. Crit. Care. 2010;14:R90. doi: 10.1186/cc9024. PubMed DOI PMC
Guzzi L.M., McCollum D.A., Hursting M.J. Effect of renal function on argatroban therapy in heparin-induced thrombocytopenia. J. Thromb. Thrombolysis. 2006;22:169–176. doi: 10.1007/s11239-006-9019-2. PubMed DOI
Dingman J.S., Smith Z.R., Coba V.E., Peters M.A., To L. Argatroban dosing requirements in extracorporeal life support and other critically ill populations. Thromb. Res. 2020;189:69–76. doi: 10.1016/j.thromres.2020.02.021. PubMed DOI
Geli J., Capoccia M., Maybauer D.M., Maybauer M.O. Argatroban Anticoagulation for Adult Extracorporeal Membrane Oxygenation: A Systematic Review. J. Intensive Care Med. 2021;37:459–471. doi: 10.1177/0885066621993739. PubMed DOI
Seidel H., Kolde H.J. Monitoring of Argatroban and Lepirudin: What is the Input of Laboratory Values in “Real Life”? Clin. Appl. Thromb./Hemost. 2018;24:287–294. doi: 10.1177/1076029617699087. PubMed DOI PMC
Smythe M.A., Forsyth L.L., Warkentin T.E., Smith M.D., Sheppard J.-A.I., Shannon F. Progressive, Fatal Thrombosis Associated with Heparin-Induced Thrombocytopenia After Cardiac Surgery Despite “Therapeutic” Anticoagulation With Argatroban: Potential Role for PTT and ACT Confounding. J. Cardiothorac. Vasc. Anesth. 2015;29:1319–1321. doi: 10.1053/j.jvca.2014.04.029. PubMed DOI
Rieg A.D., Grottke O., Schälte G., Spillner J., Autschbach R., Rossaint R., Hein M. Recombinant factor VIIa as a reversal agent of the direct thrombin inhibitor argatroban. Chirurgia. 2011;24:283–286.
Cho A.E., Jerguson K., Peterson J., Patel D.V., Saberi A.A. Cost-effectiveness of Argatroban Versus Heparin Anticoagulation in Adult Extracorporeal Membrane Oxygenation Patients. Hosp. Pharm. 2019;54:276–281. doi: 10.1177/0018578719890091. PubMed DOI PMC