Anticoagulation Management during Extracorporeal Membrane Oxygenation-A Mini-Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36556985
PubMed Central
PMC9782867
DOI
10.3390/medicina58121783
PII: medicina58121783
Knihovny.cz E-zdroje
- Klíčová slova
- aPTT, antiIIa, antiXa, anticoagulation, argatroban, bivalirudin, extracorporeal membrane oxygenation, heparin,
- MeSH
- antikoagulancia škodlivé účinky MeSH
- antitrombiny terapeutické užití MeSH
- hemokoagulace MeSH
- heparin * škodlivé účinky MeSH
- lidé MeSH
- mimotělní membránová oxygenace * škodlivé účinky metody MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antikoagulancia MeSH
- antitrombiny MeSH
- heparin * MeSH
Extracorporeal membrane oxygenation (ECMO) has been established as a life-saving technique for patients with the most severe forms of respiratory or cardiac failure. It can, however, be associated with severe complications. Anticoagulation therapy is required to prevent ECMO circuit thrombosis. It is, however, associated with an increased risk of hemocoagulation disorders. Thus, safe anticoagulation is a cornerstone of ECMO therapy. The most frequently used anticoagulant is unfractionated heparin, which can, however, cause significant adverse effects. Novel drugs (e.g., argatroban and bivalirudin) may be superior to heparin in the better predictability of their effects, functioning independently of antithrombin, inhibiting thrombin bound to fibrin, and eliminating heparin-induced thrombocytopenia. It is also necessary to keep in mind that hemocoagulation tests are not specific, and their results, used for setting up the dosage, can be biased by many factors. The knowledge of the advantages and disadvantages of particular drugs, limitations of particular tests, and individualization are cornerstones of prevention against critical events, such as life-threatening bleeding or acute oxygenator failure followed by life-threatening hypoxemia and hemodynamic deterioration. This paper describes the effects of anticoagulant drugs used in ECMO and their monitoring, highlighting specific conditions and factors that might influence coagulation and anticoagulation measurements.
Zobrazit více v PubMed
Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020;191:148–150. doi: 10.1016/j.thromres.2020.04.041. PubMed DOI PMC
Pratt E.H., Stokes J.W., Fan E. Bleeding and clotting while supported with ECMO: Time to move forward. Intensive Care Med. 2022;48:1059–1061. doi: 10.1007/s00134-022-06805-y. PubMed DOI
Mansour A., Flecher E., Schmidt M., Rozec B., Gouin-Thibault I. Bleeding and thrombotic events in patients with severe COVID-19 supported with extracorporeal membrane oxygenation: A nationwide cohort study. Sabrina Manganiello. 2022;48:1039–1052. doi: 10.1007/s00134-022-06794-y. PubMed DOI
Stokes J.W., Gannon W.D., Sherrill W.H., Armistead L.B., Bacchetta M., Rice T.W., Semler M.W., Casey J.D. Bleeding, Thromboembolism, and Clinical Outcomes in Venovenous Extracorporeal Membrane Oxygenation. Crit. Care Explor. 2020;2:e0267. doi: 10.1097/CCE.0000000000000267. PubMed DOI PMC
Aubron C., McQuilten Z., Bailey M., Board J., Buhr H., Cartwright B., Dennis M., Hodgson C., Forrest P., McIlroy D., et al. Low-Dose Versus Therapeutic Anticoagulation in Patients on Extracorporeal Membrane Oxygenation: A Pilot Randomized Trial. Crit. Care Med. 2019;47:e563–e571. doi: 10.1097/CCM.0000000000003780. PubMed DOI
Kurihara C., Walter J.M., Karim A., Thakkar S., Saine M., Odell D., Kim S., Tomic R., Wunderink R.G., Budinger G.R., et al. Feasibility of Venovenous Extracorporeal Membrane Oxygenation Without Systemic Anticoagulation. Ann. Thorac. Surg. 2020;110:1209–1215. doi: 10.1016/j.athoracsur.2020.02.011. PubMed DOI PMC
Ontaneda A., Annich G.M. Novel Surfaces in Extracorporeal Membrane Oxygenation Circuits. Front. Med. 2018;5:321. doi: 10.3389/fmed.2018.00321. PubMed DOI PMC
McMichael A.B., Ryerson L.M., Ratano D., Fan E., Faraoni D., Annich G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022;68:303–310. doi: 10.1097/MAT.0000000000001652. PubMed DOI
Levy J.H., Staudinger T., Steiner M.E. How to manage anticoagulation during extracorporeal membrane oxygenation. Intensive Care Med. 2022;48:1076–1079. doi: 10.1007/s00134-022-06723-z. PubMed DOI PMC
Lim G.B. Discovery and purification of heparin. Nat. Rev. Cardiol. 2017 doi: 10.1038/nrcardio.2017.171. PubMed DOI
Onishi A., St Ange K., Dordick J.S., Linhardt R.J. Heparin and anticoagulation. Front. Biosci. 2016;21:1372–1392. PubMed
Levy J.H., Sniecinski R.M., Welsby I.J., Levi M. Antithrombin: Anti-inflammatory properties and clinical applications. Thromb. Haemost. 2016;115:712–728. doi: 10.1160/TH15-08-0687/ID/JR0687-1. PubMed DOI
Levi M., van der Poll T., Büller H.R. Bidirectional Relation Between Inflammation and Coagulation. Circulation. 2004;109:2698–2704. doi: 10.1161/01.CIR.0000131660.51520.9A. PubMed DOI
Vatsyayan R., Kothari H., Mackman N., Pendurthi U.R., Rao L.V.M. Inactivation of Factor VIIa by Antithrombin In Vitro, Ex Vivo and In Vivo: Role of Tissue Factor and Endothelial Cell Protein C Receptor. PLoS ONE. 2014;9:e103505. doi: 10.1371/journal.pone.0103505. PubMed DOI PMC
Iba T., Saitoh D., Gando S., Thachil J. The usefulness of antithrombin activity monitoring during antithrombin supplementation in patients with sepsis-associated disseminated intravascular coagulation. Thromb. Res. 2015;135:897–901. doi: 10.1016/j.thromres.2015.03.007. PubMed DOI
Warren B.L., Eid A., Singer P., Pillay S.S., Carl P., Novak I., Chalupa P., Atherstone A., Pénzes I., Kübler A., et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: A randomized controlled trial. JAMA. 2001;286:1869–1878. doi: 10.1001/jama.286.15.1869. PubMed DOI
Kim Y.-J., Ko B.S., Park S.Y., Oh D.K., Hong S.-B., Jang S., Kim W.Y. Effect of High-dose Antithrombin Supplementation in Patients with Septic Shock and Disseminated Intravascular Coagulation. Sci. Rep. 2019;9:16626. doi: 10.1038/s41598-019-52968-y. PubMed DOI PMC
Allingstrup M., Wetterslev J., Ravn F.B., Møller A.M., Afshari A. Antithrombin III for critically ill patients: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2016;42:505–520. doi: 10.1007/s00134-016-4225-7. PubMed DOI PMC
Capila I., Linhardt R.J. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 2002;41:390–412. doi: 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B. PubMed DOI
Binari R.C., Staveley B.E., Johnson W.A., Godavarti R., Sasisekharan R., Manoukian A.S. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development. 1997;124:2623–2632. doi: 10.1242/dev.124.13.2623. PubMed DOI
Ito M., Baba M., Sato A., Pauwels R., de Clercq E., Shigeta S. Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antivir. Res. 1987;7:361–367. doi: 10.1016/0166-3542(87)90018-0. PubMed DOI
Mycroft-West C., Su D., Elli S., Li Y., Guimond S., Miller G., Turnbull J., Yates E., Guerrini M., Fernig D. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. bioRxiv. 2020 doi: 10.1101/2020.02.29.971093. DOI
Castelli R., Porro F., Tarsia P. The heparins and cancer: Review of clinical trials and biological properties. Vasc Med. 2004;9:205–213. doi: 10.1191/1358863x04vm566ra. PubMed DOI
Godier A., Clausse D., Meslin S., Bazine M., Lang E., Huche F., Cholley B., Hamada S.R. Major bleeding complications in critically ill patients with COVID-19 pneumonia. J. Thromb. Thrombolysis. 2021;52:18–21. doi: 10.1007/s11239-021-02403-9. PubMed DOI PMC
Lee G.M., Arepally G.M. Heparin-induced thrombocytopenia. Hematology. 2013;2013:668–674. doi: 10.1182/asheducation-2013.1.668. PubMed DOI PMC
Cuker A., Arepally G., Crowther M.A., Rice L., Datko F., Hook K., Propert K.J., Kuter D.J., Ortel T.L., Konkle B.A., et al. The HIT Expert Probability (HEP) Score: A novel pre-test probability model for heparin-induced thrombocytopenia based on broad expert opinion. J. Thromb. Haemost. 2010;8:2642–2650. doi: 10.1111/j.1538-7836.2010.04059.x. PubMed DOI
Sullivan J., Bak E., Sullivan M.J., Gurnani P.K. Predictive value of scoring tools in determining heparin-induced thrombocytopenia in patients on extracorporeal membrane oxygenation. Perfusion. 2020;35:378–383. doi: 10.1177/0267659119881266. PubMed DOI
Martel N., Lee J., Wells P.S. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: A meta-analysis. Blood. 2005;106:2710–2715. doi: 10.1182/blood-2005-04-1546. PubMed DOI
Choi J.H., Luc J.G.Y., Weber M.P., Reddy H.G., Maynes E.J., Deb A.K., Samuels L.E., Morris R.J., Massey H.T., Loforte A., et al. Heparin-induced thrombocytopenia during extracorporeal life support: Incidence, management and outcomes. Ann. Cardiothorac. Surg. 2019;8:19–31. doi: 10.21037/acs.2018.12.02. PubMed DOI PMC
Burstein B., Wieruszewski P.M., Zhao Y.J., Smischney N. Anticoagulation with direct thrombin inhibitors during extracorporeal membrane oxygenation. World J. Crit. Care Med. 2019;8:87–98. doi: 10.5492/wjccm.v8.i6.87. PubMed DOI PMC
Natt B., Hypes C., Basken R., Malo J., Kazui T., Mosier J. Suspected Heparin-Induced Thrombocytopenia in Patients Receiving Extracorporeal Membrane Oxygenation. J. Extra Corpor. Technol. 2017;49:54. PubMed PMC
Levy J.H., Connors J.M. Heparin Resistance-Clinical Perspectives and Management Strategies. N. Engl. J. Med. 2021;385:826–832. doi: 10.1056/NEJMra2104091. PubMed DOI
Kato C., Oakes M., Kim M., Desai A., Olson S.R., Raghunathan V., Shatzel J.J. Anticoagulation strategies in extracorporeal circulatory devices in adult populations. Eur. J. Haematol. 2021;106:19–31. doi: 10.1111/ejh.13520. PubMed DOI PMC
Kawatsu S., Sasaki K., Sakatsume K., Takahara S., Hosoyama K., Masaki N., Suzuki Y., Hayatsu Y., Yoshioka I., Sakuma K., et al. Predictors of Heparin Resistance Before Cardiovascular Operations in Adults. Ann. Thorac. Surg. 2018;105:1316–1321. doi: 10.1016/j.athoracsur.2018.01.068. PubMed DOI
Novelli C., Borotto E., Beverina I., Punzi V., Radrizzani D., Brando B. Heparin dosage, level, and resistance in SARS-CoV2 infected patients in intensive care unit. Int. J. Lab. Hematol. 2021;43:1284–1290. doi: 10.1111/ijlh.13543. PubMed DOI PMC
Gratz J., Pausch A., Schaden E., Baierl A., Jaksch P., Erhart F., Hoetzenecker K., Wiegele M. Low molecular weight heparin versus unfractioned heparin for anticoagulation during perioperative extracorporeal membrane oxygenation: A single center experience in 102 lung transplant patients. Artif. Organs. 2020;44:638–646. doi: 10.1111/aor.13642. PubMed DOI PMC
Vitiello A., Ferrara F. Low Molecular Weight Heparin, Anti-inflammatory/Immunoregulatory and Antiviral Effects, a Short Update. Cardiovasc. Drugs Ther. 2021;1:1. doi: 10.1007/s10557-021-07251-6. PubMed DOI PMC
Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N., et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020;183:1043–1057. doi: 10.1016/j.cell.2020.09.033. PubMed DOI PMC
Buijsers B., Yanginlar C., de Nooijer A., Grondman I., Maciej-Hulme M.L., Jonkman I., Janssen N.A.F., Rother N., de Graaf M., Pickkers P., et al. Increased Plasma Heparanase Activity in COVID-19 Patients. Front. Immunol. 2020;11:575047. doi: 10.3389/fimmu.2020.575047. PubMed DOI PMC
Fernández S., Moreno-Castaño A.B., Palomo M., Martinez-Sanchez J., Torramadé-Moix S., Téllez A., Ventosa H., Seguí F., Escolar G., Carreras E., et al. Distinctive Biomarker Features in the Endotheliopathy of COVID-19 and Septic Syndromes. Shock. 2022;57:95. doi: 10.1097/SHK.0000000000001823. PubMed DOI PMC
Rico S., Antonijoan R.M., Gich I., Borrell M., Fontcuberta J., Monreal M., Martinez-Gonzalez J., Barbanoj M.J. Safety assessment and pharmacodynamics of a novel ultra low molecular weight heparin (RO-14) in healthy volunteers—A first-time-in-human single ascending dose study. Thromb. Res. 2011;127:292–298. doi: 10.1016/j.thromres.2010.12.009. PubMed DOI
Parlar A.I., Sayar U., Cevirme D., Yuruk M.A., Mataraci I. Successful use of fondaparinux in a patient with heparin-induced thrombocytopenia while on extracorporeal membrane oxygenation after mitral valve redo surgery. Int. J. Artif. Organs. 2014;37:344–347. doi: 10.5301/ijao.5000302. PubMed DOI
Lee C.J., Ansell J.E. Direct thrombin inhibitors. Br. J. Clin. Pharmacol. 2011;72:581–592. doi: 10.1111/j.1365-2125.2011.03916.x. PubMed DOI PMC
Bates S.M., Weitz J.I. The mechanism of action of thrombin inhibitors. [(accessed on 13 June 2022)];J. Invasive Cardiol. 2000 12:27F–32F. Available online: https://pubmed.ncbi.nlm.nih.gov/11156731/ PubMed
Schaden E., Kozek-Langenecker S.A. Direct thrombin inhibitors: Pharmacology and application in intensive care medicine. Intensive Care Med. 2010;36:1127–1137. doi: 10.1007/s00134-010-1888-3. PubMed DOI
Sattler L.A., Boster J.M., Ivins-O’Keefe K.M., Sobieszczyk M.J., Reel B.A., Mason P.E., Walter R.J., Sams V.G. Argatroban for Anticoagulation in Patients Requiring Venovenous Extracorporeal Membrane Oxygenation in Coronavirus Disease 2019. Crit. Care Explor. 2021;3:e0530. doi: 10.1097/CCE.0000000000000530. PubMed DOI PMC
Reed M.D., Bell D. Clinical pharmacology of bivalirudin. Pt 2Pharmacotherapy. 2002;22:105S–111S. doi: 10.1592/phco.22.10.105S.33616. PubMed DOI
Robson R., White H., Aylward P., Frampton C. Bivalirudin pharmacokinetics and pharmacodynamics: Effect of renal function, dose, and gender. Clin. Pharmacol. Ther. 2002;71:433–439. doi: 10.1067/mcp.2002.124522. PubMed DOI
Sanfilippo F., Asmussen S., Maybauer D.M., Santonocito C., Fraser J.F., Erdoes G., Maybauer M. Bivalirudin for Alternative Anticoagulation in Extracorporeal Membrane Oxygenation: A Systematic Review. J. Intensiv. Care Med. 2016;32:312–319. doi: 10.1177/0885066616656333. PubMed DOI
de Caterina R. The current role of anticoagulants in cardiovascular medicine. J. Cardiovasc. Med. 2009;10:595–604. doi: 10.2459/JCM.0b013e32832e490b. PubMed DOI
Netley J., Roy J., Greenlee J., Hart S., Todt M., Statz B. Bivalirudin Anticoagulation Dosing Protocol for Extracorporeal Membrane Oxygenation: A Retrospective Review. [(accessed on 13 June 2022)];J. Extra Corpor. Technol. 2018 50:161–166. Available online: https://pubmed.ncbi.nlm.nih.gov/30250342/ PubMed PMC
Walker E.A., Roberts A.J., Louie E.L., Dager W.E. Bivalirudin Dosing Requirements in Adult Patients on Extracorporeal Life Support With or Without Continuous Renal Replacement Therapy. ASAIO J. 2019;65:134–138. doi: 10.1097/MAT.0000000000000780. PubMed DOI
Ranucci M., Ballotta A., Kandil H., Isgrò G., Carlucci C., Baryshnikova E., Pistuddi V. Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Crit. Care. 2011;15:R275. doi: 10.1186/cc10556. PubMed DOI PMC
Pollak U. Heparin-induced thrombocytopenia complicating extracorporeal membrane oxygenation support in pediatric patients: Review of the literature and alternative anticoagulants. Perfusion. 2018;33:7–17. doi: 10.1177/0267659118766723. PubMed DOI
Pappalardo F., Maj G., Scandroglio A., Sampietro F., Zangrillo A., Koster A. Bioline heparin-coated ECMO with bivalirudin anticoagulation in a patient with acute heparin-induced thrombocytopenia: The immune reaction appeared to continue unabated. Perfusion. 2009;24:135–137. doi: 10.1177/0267659109106773. PubMed DOI
Tsu L.V., Dager W.E. Bivalirudin dosing adjustments for reduced renal function with or without hemodialysis in the management of heparin-induced thrombocytopenia. Ann. Pharmacother. 2011;45:1185–1192. doi: 10.1345/aph.1Q177. PubMed DOI
Pieri M., Agracheva N., Bonaveglio E., Greco T., De Bonis M., Covello R.D., Zangrillo A., Pappalardo F. Bivalirudin versus heparin as an anticoagulant during extracorporeal membrane oxygenation: A case-control study. J. Cardiothorac. Vasc. Anesth. 2013;27:30–34. doi: 10.1053/j.jvca.2012.07.019. PubMed DOI
Du P., Li X., Sun L., Pan Y., Zhu H., Li Y., Yang Y., Wei X., Jing C., Chen H., et al. Improved hemocompatibility by modifying acellular blood vessels with bivalirudin and its biocompatibility evaluation. J. Biomed. Mater. Res. A. 2022;110:635–651. doi: 10.1002/jbm.a.37316. PubMed DOI
Berei T.J., Lillyblad M.P., Wilson K.J., Garberich R.F., Hryniewicz K.M. Evaluation of Systemic Heparin Versus Bivalirudin in Adult Patients Supported by Extracorporeal Membrane Oxygenation. ASAIO J. 2018;64:623–629. doi: 10.1097/MAT.0000000000000691. PubMed DOI
Linkins L.-A., Dans A.L., Moores L.K., Bona R., Davidson B.L., Schulman S., Crowther M. Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e495S–e530S. doi: 10.1378/chest.11-2303. PubMed DOI PMC
Ranucci M., Baryshnikova E., Isgrò G., Carlucci C., Cotza M., Carboni G., Ballotta A. Heparin-like effect in postcardiotomy extracorporeal membrane oxygenation patients. Crit. Care. 2014;18:504. doi: 10.1186/s13054-014-0504-2. PubMed DOI PMC
Lewis B.E., Wallis D.E., Berkowitz S., Matthai W.H., Fareed J., Walenga J.M., Bartholomew J., Sham R., Lerner R.G., Zeigler Z.R., et al. Argatroban anticoagulant therapy in patients with heparin-induced thrombocytopenia. Circulation. 2001;103:1838–1843. doi: 10.1161/01.CIR.103.14.1838. PubMed DOI
Walenga J.M. An Overview of the Direct Thrombin Inhibitor Argatroban. Pathophysiol. Haemost. Thromb. 2002;32((Suppl. 3)):9–14. doi: 10.1159/000069103. PubMed DOI
Tran J.Q., Di Cicco R.A., Sheth S.B., Tucci M., Peng L., Jorkasky D.K., Hursting M.J., Benincosa L.J. Assessment of the Potential Pharmacokinetic and Pharmacodynamic Interactions between Erythromycin and Argatroban. J. Clin. Pharmacol. 1999;39:513–519. doi: 10.1177/009127009903900512. PubMed DOI
Zhang L., Yang J., Zheng X., Fan Q., Zhang Z. Influences of argatroban on five fibrinogen assays. Int. J. Lab. Hematol. 2017;39:641–644. doi: 10.1111/ijlh.12719. PubMed DOI
Kondo L.M., Wittkowsky A.K., Wiggins B.S. Argatroban for prevention and treatment of thromboembolism in heparin-induced thrombocytopenia. Ann. Pharmacother. 2001;35:440–451. doi: 10.1345/aph.10301. PubMed DOI
Jang I.-K., Brown D.F., Giugliano R., Anderson H., Losordo D., Nicolau J., Dutra O.P., Bazzino O., Viamonte V.M., Norbady R., et al. A multicenter, randomized study of argatroban versus heparin as adjunct to tissue plasminogen activator (TPA) in acute myocardial infarction: Myocardial infarction with novastan and TPA (MINT) study. J. Am. Coll. Cardiol. 1999;33:1879–1885. doi: 10.1016/S0735-1097(99)00107-2. PubMed DOI
Aliter K.F., Al-Horani R.A. Thrombin Inhibition by Argatroban: Potential Therapeutic Benefits in COVID-19. Cardiovasc. Drugs Ther. 2021;35:195. doi: 10.1007/s10557-020-07066-x. PubMed DOI PMC
Beiderlinden M., Treschan T.A., Görlinger K., Peters J. Argatroban anticoagulation in critically ill patients. Ann. Pharmacother. 2007;41:749–754. doi: 10.1345/aph.1H569. PubMed DOI
Dolch M.E., Frey L., Hatz R., A Uberfuhr P., Beiras-Fernandez A., Behr J., Irlbeck M. Extracorporeal membrane oxygenation bridging to lung transplant complicated by heparin-induced thrombocytopenia. Exp. Clin. Transplant. 2010;8:329–332. PubMed
Levine R.L., Hursting M.J., McCollum D. Argatroban Therapy in Heparin-Induced Thrombocytopenia With Hepatic Dysfunction. Chest. 2006;129:1167–1175. doi: 10.1378/chest.129.5.1167. PubMed DOI
Dingman J.S., Smith Z.R., Coba V.E., Peters M.A., To L. Argatroban dosing requirements in extracorporeal life support and other critically ill populations. Thromb. Res. 2020;189:69–76. doi: 10.1016/j.thromres.2020.02.021. PubMed DOI
Beiderlinden M., Treschan T., Görlinger K., Peters J. Argatroban in extracorporeal membrane oxygenation. Artif. Organs. 2007;31:461–465. doi: 10.1111/j.1525-1594.2007.00388.x. PubMed DOI
Sin J.H., Lopez N.D. Argatroban for Heparin-Induced Thrombocytopenia during Venovenous Extracorporeal Membrane Oxygenation with Continuous Venovenous Hemofiltration. J. Extra Corpor. Technol. 2017;49:115. PubMed PMC
Menk M., Briem P., Weiss B., Gassner M., Schwaiberger D., Goldmann A., Pille C., Weber-Carstens S. Efficacy and safety of argatroban in patients with acute respiratory distress syndrome and extracorporeal lung support. Ann. Intensive Care. 2017;7:82. doi: 10.1186/s13613-017-0302-5. PubMed DOI PMC
Patel K., Saraf P., Shiu D., Patel C., Ali N., Lee J., Junaid N., Patel P., Anandarangam T., Seethamraju H. Safety Profile of Argatroban vs Heparin for Anticoagulation in Patients Requiring Extra Corporeal Membrane Oxygenation (ECMO) Therapy. Chest. 2015;148:193A. doi: 10.1378/chest.2281355. DOI
Geli J., Capoccia M., Maybauer D.M., Maybauer M.O. Argatroban Anticoagulation for Adult Extracorporeal Membrane Oxygenation: A Systematic Review. J. Intensive Care Med. 2021;37:459–471. doi: 10.1177/0885066621993739. PubMed DOI
Cardinale M., Ha M., Liu M.H., Reardon D.P. Direct Thrombin Inhibitor Resistance and Possible Mechanisms. Hosp. Pharm. 2016;51:922–927. doi: 10.1310/hpj5111-922. PubMed DOI PMC
Hellwig T.R., Peitz G.J., Gulseth M.P. High-dose argatroban for treatment of heparin-induced thrombocytopenia with thrombosis: A case report and review of laboratory considerations. Am. J. Health Syst. Pharm. 2012;69:490–495. doi: 10.2146/ajhp110147. PubMed DOI
Carter K.T., Kutcher M.E., Shake J.G., Panos A.L., Cochran R.P., Creswell L.L., Copeland H. Heparin-Sparing Anticoagulation Strategies Are Viable Options for Patients on Veno-Venous ECMO. J. Surg. Res. 2019;243:399–409. doi: 10.1016/j.jss.2019.05.050. PubMed DOI PMC
Raff L.A., Maine R.G., Reid T.S. Veno-Venous Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome During Hemorrhagic Shock. ASAIO J. 2021;67:E140–E144. doi: 10.1097/MAT.0000000000001305. PubMed DOI
Murphree C.R., Shatzel J.J., Olson S.R. Bleeding and Thrombotic Outcomes in Anticoagulant Free Extracorporeal Membrane Oxygenation (ECMO) in Adults: A Systematic Review. Blood. 2019;134((Suppl. 1)) doi: 10.1182/blood-2019-125132. DOI
Olson S.R., Murphree C.R., Zonies D., Meyer A.D., Mccarty O.J.T., Deloughery T.G., Shatzel J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2021;67:290–296. doi: 10.1097/MAT.0000000000001230. PubMed DOI PMC
Robba C., Ortu A., Bilotta F., Lombardo A., Sekhon M.S., Gallo F., Matta B.F. Extracorporeal membrane oxygenation for adult respiratory distress syndrome in trauma patients: A case series and systematic literature review. J. Trauma Acute. Care Surg. 2017;82:165–173. doi: 10.1097/TA.0000000000001276. PubMed DOI
Wilbs J., Kong X.-D., Middendorp S.J., Prince R., Cooke A., Demarest C.T., Abdelhafez M.M., Roberts K., Umei N., Gonschorek P., et al. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nat. Commun. 2020;11:3890. doi: 10.1038/s41467-020-17648-w. PubMed DOI PMC
Weitz J.I. Factor XI and factor XII as targets for new anticoagulants. Thromb. Res. 2016;141((Suppl. 2)):S40–S45. doi: 10.1016/S0049-3848(16)30363-2. PubMed DOI
Huang D., Guan Q., Qin J., Shan R., Wu J., Zhang C. Bivalirudin versus heparin anticoagulation in patients receiving extracorporeal membrane oxygenation. Perfusion. 2022 doi: 10.1177/02676591221105605. PubMed DOI
Schill M.R., Douds M.T., Burns E.L., Lahart M.A., Said A.S., Abarbanell A.M. Is anticoagulation with bivalirudin comparable to heparin for pediatric extracorporeal life support? Results from a high-volume center. Artif. Organs. 2021;45:15–21. doi: 10.1111/aor.13758. PubMed DOI
Giuliano K., Bigelow B.F., Etchill E.W., Velez A.K., Ong C.S., Choi C.W., Bush E., Cho S.-M., Whitman G.J.R. Extracorporeal Membrane Oxygenation Complications in Heparin- and Bivalirudin-Treated Patients. Crit. Care Explor. 2021;3:e0485. doi: 10.1097/CCE.0000000000000485. PubMed DOI PMC
Kaseer H., Soto-Arenall M., Sanghavi D., Moss J., Ratzlaff R., Pham S., Guru P. Heparin vs bivalirudin anticoagulation for extracorporeal membrane oxygenation. J. Card. Surg. 2020;35:779–786. doi: 10.1111/jocs.14458. PubMed DOI
Seelhammer T.G., Bohman J.K., Schulte P.J., Hanson A.C., Aganga D.O. Comparison of Bivalirudin Versus Heparin for Maintenance Systemic Anticoagulation During Adult and Pediatric Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021;49:1481–1492. doi: 10.1097/CCM.0000000000005033. PubMed DOI
Chen J.L. Argatroban: A direct thrombin inhibitor for heparin-induced thrombocytopenia and other clinical applications. Heart Dis. 2001;3:189–198. doi: 10.1097/00132580-200105000-00009. PubMed DOI
Young G., Yonekawa K.E., Nakagawa P., Nugent D.J. Argatroban as an alternative to heparin in extracorporeal membrane oxygenation circuits. Perfusion. 2004;19:283–288. doi: 10.1191/0267659104pf759oa. PubMed DOI
Fisser C., Winkler M., Malfertheiner M.V., Philipp A., Foltan M., Lunz D., Zeman F., Maier L.S., Lubnow M., Müller T. Argatroban versus heparin in patients without heparin-induced thrombocytopenia during venovenous extracorporeal membrane oxygenation: A propensity-score matched study. Crit. Care. 2021;25:160. doi: 10.1186/s13054-021-03581-x. PubMed DOI PMC
Cho A.E., Jerguson K., Peterson J., Patel D.V., Saberi A.A. Cost-effectiveness of Argatroban Versus Heparin Anticoagulation in Adult Extracorporeal Membrane Oxygenation Patients. Hosp. Pharm. 2021;56:276–281. doi: 10.1177/0018578719890091. PubMed DOI PMC
Update on Anticoagulation Strategies in Patients with ECMO-A Narrative Review