Are all HCL systems the same? long term outcomes of three HCL systems in children with type 1 diabetes: real-life registry-based study
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37908748
PubMed Central
PMC10613700
DOI
10.3389/fendo.2023.1283181
Knihovny.cz E-zdroje
- Klíčová slova
- AndroidAPS, hybrid closed loop, pediatrics, registry, type 1 diabetes,
- MeSH
- diabetes mellitus 1. typu * farmakoterapie MeSH
- dítě MeSH
- glykovaný hemoglobin MeSH
- hypoglykemie * chemicky indukované epidemiologie MeSH
- inzulin terapeutické užití MeSH
- inzulinové infuzní systémy MeSH
- krevní glukóza MeSH
- lidé MeSH
- průřezové studie MeSH
- registrace MeSH
- selfmonitoring glykemie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykovaný hemoglobin MeSH
- inzulin MeSH
- krevní glukóza MeSH
OBJECTIVE: To compare parameters of glycemic control among three types of hybrid closed loop (HCL) systems in children with T1D (CwD) using population-wide data from the national pediatric diabetes registry ČENDA. METHODS: CwD aged <19 years treated with Medtronic MiniMed 780G (780G), Tandem t:slim X2 (Control-IQ) or do-it-yourself AndroidAPS (AAPS) systems for >12 months and monitored by CGM >70% of the time were included. HbA1c, times in glycemic ranges, and Glycemia Risk Index (GRI) were used for cross-sectional comparison between the HCL systems. RESULTS: Data from 512 CwD were analyzed. 780G, Control-IQ and AAPS were used by 217 (42.4%), 211 (41.2%), and 84 (16.4%) CwD, respectively. The lowest HbA1c value was observed in the AAPS group (44 mmol/mol; IQR 8.0, p<0.0001 vs any other group), followed by Control-IQ and 780G groups (48 (IQR 11) and 52 (IQR 10) mmol/mol, respectively). All of the systems met the recommended criteria for time in range (78% in AAPS, 76% in 780G, and 75% in Control-IQ users). CwD using AAPS spent significantly more time in hypoglycemia (5% vs 2% in 780G and 3% in Control-IQ) and scored the highest GRI (32, IQR 17). The lowest GRI (27, IQR 15) was seen in 780G users. CONCLUSION: Although all HCL systems proved effective in maintaining recommended long-term glycemic control, we observed differences that illustrate strengths and weaknesses of particular systems. Our findings could help in individualizing the choice of HCL systems.
1st Faculty of Medicine Charles University Prague Czechia
Department of Pediatrics Hospital Ceske Budejovice Ceske Budejovice Czechia
Department of Pediatrics Masaryk Hospital Usti nad Labem Czechia
Department of Pediatrics Motol University Hospital and 2nd Faculty of Medicine Prague Czechia
Department of Pediatrics University Hospital Brno Brno Czechia
Department of Pediatrics University Hospital Hradec Kralove Hradec Kralove Czechia
Department of Pediatrics University Hospital Kralovske Vinohrady Prague Czechia
Department of Pediatrics University Hospital Olomouc Olomouc Czechia
Department of Pediatrics University Hospital Ostrava Ostrava Czechia
Department of Pediatrics University Hospital Plzen Plzen Czechia
Zobrazit více v PubMed
Boughton CK, Hovorka R. New closed-loop insulin systems. Diabetologia (2021) 64:1007–15. doi: 10.1007/s00125-021-05391-w PubMed DOI PMC
Carlson AL, Sherr JL, Shulman DI, Garg SK, Pop-Busui R, Bode BW, et al. . Safety and glycemic outcomes during the miniMedTM advanced hybrid closed-loop system pivotal trial in adolescents and adults with type 1 diabetes. Diabetes Technol Ther (2022) 24:178–89. doi: 10.1089/dia.2021.0319 PubMed DOI PMC
Da Silva J, Lepore G, Battelino T, Arrieta A, Castañeda J, Grossman B, et al. . Real-world performance of the miniMedTM 780G system: first report of outcomes from 4120 users. Diabetes Technol Ther (2022) 24:113–9. doi: 10.1089/dia.2021.0203 PubMed DOI PMC
Pinsker JE, Müller L, Constantin A, Leas S, Manning M, McElwee Malloy M, et al. . Real-world patient-reported outcomes and glycemic results with initiation of control-IQ technology. Diabetes Technol Ther (2021) 23:120–7. doi: 10.1089/dia.2020.0388 PubMed DOI PMC
Sumnik Z, Pavlikova M, Neuman V, Petruzelkova L, Konecna P, Venhacova P, et al. . Glycemic control by treatment modalities: national registry-based population data in children and adolescents with type 1 diabetes. Horm Res Paediatr (2023). doi: 10.1159/000530833 PubMed DOI
Braune K, O’Donnell S, Cleal B, Lewis D, Tappe A, Willaing I, et al. . Real-world use of do-it-yourself artificial pancreas systems in children and adolescents with type 1 diabetes: online survey and analysis of self-reported clinical outcomes. JMIR Mhealth Uhealth (2019) 7:e14087. doi: 10.2196/14087 PubMed DOI PMC
Collyns OJ, Meier RA, Betts ZL, Chan DSH, Frampton C, Frewen CM, et al. . Improved glycemic outcomes with medtronic miniMed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care (2021) 44:969–75. doi: 10.2337/dc20-2250 PubMed DOI
Breton MD, Kanapka LG, Beck RW, Ekhlaspour L, Forlenza GP, Cengiz E, et al. . A randomized trial of closed-loop control in children with type 1 diabetes. N Engl J Med (2020) 383:836–45. doi: 10.1056/NEJMoa2004736 PubMed DOI PMC
Wadwa RP, Reed ZW, Buckingham BA, DeBoer MD, Ekhlaspour L, Forlenza GP, et al. . Trial of hybrid closed-loop control in young children with type 1 diabetes. N Engl J Med (2023) 388:991–1001. doi: 10.1056/NEJMoa2210834 PubMed DOI PMC
Choudhary P, Kolassa R, Keuthage W, Kroeger J, Thivolet C, Evans M, et al. . Advanced hybrid closed loop therapy versus conventional treatment in adults with type 1 diabetes (ADAPT): a randomised controlled study. Lancet Diabetes Endocrinol (2022) 10:720–31. doi: 10.1016/S2213-8587(22)00212-1 PubMed DOI
Petruzelkova L, Jiranova P, Soupal J, Kozak M, Plachy L, Neuman V, et al. . Pre-school and school-aged children benefit from the switch from a sensor-augmented pump to an AndroidAPS hybrid closed loop: A retrospective analysis. Pediatr Diabetes (2021) 22:594–604. doi: 10.1111/pedi.13190 PubMed DOI
Braune K, Lal RA, Petruželková L, Scheiner G, Winterdijk P, Schmidt S, et al. . Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals. Lancet Diabetes Endocrinol (2022) 10:58–74. doi: 10.1016/S2213-8587(21)00267-9 PubMed DOI PMC
Breton MD, Kovatchev BP. One year real-world use of the control-IQ advanced hybrid closed-loop technology. Diabetes Technol Ther (2021) 23:601–8. doi: 10.1089/dia.2021.0097 PubMed DOI PMC
Gawrecki A, Zozulinska-Ziolkiewicz D, Michalak MA, Adamska A, Michalak M, Frackowiak U, et al. . Safety and glycemic outcomes of do-it-yourself AndroidAPS hybrid closed-loop system in adults with type 1 diabetes. PLoS One (2021) 16:e0248965. doi: 10.1371/journal.pone.0248965 PubMed DOI PMC
Šumník Z, Venháčová J, Škvor J, Pomahačová R, Konečná P, Neumann D, et al. . Five years of improving diabetes control in Czech children after the establishment of the population-based childhood diabetes register ČENDA. Pediatr Diabetes (2020) 21:77–87. doi: 10.1111/pedi.12929 PubMed DOI
Šumník Z, Pavlíková M, Pomahačová R, Venháčová P, Petruželková L, Škvor J, et al. . Use of continuous glucose monitoring and its association with type 1 diabetes control in children over the first 3 years of reimbursement approval: Population data from the ČENDA registry. Pediatr Diabetes (2021) 22:439–47. doi: 10.1111/pedi.13184 PubMed DOI
Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. . Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care (2019) 42:1593–603. doi: 10.2337/dci19-0028 PubMed DOI PMC
Klonoff DC, Wang J, Rodbard D, Kohn MA, Li C, Liepmann D, et al. . A glycemia risk index (GRI) of hypoglycemia and hyperglycemia for continuous glucose monitoring validated by clinician ratings. J Diabetes Sci Technol (2022) 193229682210852. doi: 10.1177/19322968221085273 PubMed DOI PMC
Cefalu M, Ridgeway G, Mccaffrey D, Morral A, Griffin AB, Burgette L. Toolkit for weighting and analysis of nonequivalent groups. R Package (2006).
Sundberg F, deBeaufort C, Krogvold L, Patton S, Piloya T, Smart C, et al. . ISPAD Clinical Practice Consensus Guidelines 2022: Managing diabetes in preschoolers. Pediatr Diabetes (2022) 23:1496–511. doi: 10.1111/pedi.13427 PubMed DOI PMC
Arrieta A, Battelino T, Scaramuzza AE, Da Silva J, Castañeda J, Cordero TL, et al. . Comparison of MiniMed 780G system performance in users aged younger and older than 15 years: Evidence from 12 870 real-world users. Diabetes Obes Metab (2022) 24:1370–9. doi: 10.1111/dom.14714 PubMed DOI PMC
Schiaffini R, Deodati A, Nicoletti MC, Carducci C, Ciampalini P, Lorubbio A, et al. . Comparison of two advanced hybrid closed loop in a pediatric population with type 1 diabetes: a real-life observational study. Acta Diabetol (2022) 59:959–64. doi: 10.1007/s00592-022-01886-z PubMed DOI
Bassi M, Patti L, Silvestrini I, Strati MF, Ponzano M, Minuto N, et al. . One-year follow-up comparison of two hybrid closed-loop systems in Italian children and adults with type 1 diabetes. Front Endocrinol (Lausanne) (2023) 14:1099024. doi: 10.3389/fendo.2023.1099024 PubMed DOI PMC
Tsujino D, Nishimura R, Onda Y, Seo C, Ando K, Morimoto A, et al. . The relationship between HbA1c values and the occurrence of hypoglycemia as assessed by continuous glucose monitoring in patients with type 1 diabetes. Diabetol Metab Syndr (2016) 8:53. doi: 10.1186/s13098-016-0167-z PubMed DOI PMC
Lombardo F, Passanisi S, Alibrandi A, Bombaci B, Bonfanti R, Delvecchio M, et al. . MiniMed 780G six-month use in children and adolescents with type 1 diabetes: clinical targets and predictors of optimal glucose control. Diabetes Technol Ther (2023) 25:404–13. doi: 10.1089/dia.2022.0491 PubMed DOI