Low oral dose of 4-methylumbelliferone reduces glial scar but is insufficient to induce functional recovery after spinal cord injury
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
MR/S011110/1
Medical Research Council - United Kingdom
WT104818MA
Wellcome Trust - United Kingdom
MC-PC-16050
Medical Research Council - United Kingdom
PubMed
37932336
PubMed Central
PMC10628150
DOI
10.1038/s41598-023-46539-5
PII: 10.1038/s41598-023-46539-5
Knihovny.cz E-resources
- MeSH
- Chondroitin Sulfate Proteoglycans MeSH
- Gliosis * pathology MeSH
- Hymecromone therapeutic use MeSH
- Rats MeSH
- Hyaluronic Acid MeSH
- Spinal Cord pathology MeSH
- Spinal Cord Injuries * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chondroitin Sulfate Proteoglycans MeSH
- Hymecromone MeSH
- Hyaluronic Acid MeSH
Spinal cord injury (SCI) induces the upregulation of chondroitin sulfate proteoglycans (CSPGs) at the glial scar and inhibits neuroregeneration. Under normal physiological condition, CSPGs interact with hyaluronan (HA) and other extracellular matrix on the neuronal surface forming a macromolecular structure called perineuronal nets (PNNs) which regulate neuroplasticity. 4-methylumbelliferone (4-MU) is a known inhibitor for HA synthesis but has not been tested in SCI. We first tested the effect of 4-MU in HA reduction in uninjured rats. After 8 weeks of 4-MU administration at a dose of 1.2 g/kg/day, we have not only observed a reduction of HA in the uninjured spinal cords but also a down-regulation of CS glycosaminoglycans (CS-GAGs). In order to assess the effect of 4-MU in chronic SCI, six weeks after Th8 spinal contusion injury, rats were fed with 4-MU or placebo for 8 weeks in combination with daily treadmill rehabilitation for 16 weeks to promote neuroplasticity. 4-MU treatment reduced the HA synthesis by astrocytes around the lesion site and increased sprouting of 5-hydroxytryptamine fibres into ventral horns. However, the current dose was not sufficient to suppress CS-GAG up-regulation induced by SCI. Further adjustment on the dosage will be required to benefit functional recovery after SCI.
Department of Neuroscience Charles University 2nd Faculty of Medicine 15006 Prague Czech Republic
Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
Institute of Experimental Medicine Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
Institute of Physics Czech Academy of Sciences 182 21 Prague Czech Republic
See more in PubMed
Keough MB, et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat. Commun. 2016;7:11312. doi: 10.1038/ncomms11312. PubMed DOI PMC
Pinchi E, et al. Acute spinal cord injury: A systematic review investigating miRNA families involved. Int. J. Mol. Sci. 2019;20:E1841. doi: 10.3390/ijms20081841. PubMed DOI PMC
Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. (Wars) 2011;71:281–299. doi: 10.55782/ane-2011-1848. PubMed DOI
Kaplan A, Ong Tone S, Fournier AE. Extrinsic and intrinsic regulation of axon regeneration at a crossroads. Front. Mol. Neurosci. 2015;8:27. doi: 10.3389/fnmol.2015.00027. PubMed DOI PMC
Vogelaar CF. Extrinsic and intrinsic mechanisms of axon regeneration: The need for spinal cord injury treatment strategies to address both. Neural Regen Res. 2016;11:572–574. doi: 10.4103/1673-5374.180740. PubMed DOI PMC
Nagappan PG, Chen H, Wang D-Y. Neuroregeneration and plasticity: A review of the physiological mechanisms for achieving functional recovery postinjury. Mil. Med. Res. 2020;7:30. PubMed PMC
Carulli D, Verhaagen J. An extracellular perspective on CNS maturation: Perineuronal nets and the control of plasticity. Int. J. Mol. Sci. 2021;22:2434. doi: 10.3390/ijms22052434. PubMed DOI PMC
van ’t Spijker, H. M. & Kwok, J. C. F. A sweet talk: The molecular systems of perineuronal nets in controlling neuronal communication. Front. Integr. Neurosci.11, 33 (2017). PubMed PMC
Pizzorusso T, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI
Carulli D, et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133:2331–2347. doi: 10.1093/brain/awq145. PubMed DOI
Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc. Natl. Acad. Sci. U S A. 2013;110:12456–12461. doi: 10.1073/pnas.1310158110. PubMed DOI PMC
Takahashi-IWANAGA H, Murakami T, Abe K. Three-dimensional microanatomy of perineuronal proteoglycan nets enveloping motor neurons in the rat spinal cord. J. Neurocytol. 1998;27:817–827. doi: 10.1023/A:1006955414939. PubMed DOI
Vitellaro-Zuccarello L, Bosisio P, Mazzetti S, Monti C, De Biasi S. Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. Cell Tissue Res. 2007;327:433–447. doi: 10.1007/s00441-006-0289-y. PubMed DOI
Galtrey CM, Kwok JCF, Carulli D, Rhodes KE, Fawcett JW. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 2008;27:1373–1390. doi: 10.1111/j.1460-9568.2008.06108.x. PubMed DOI
Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front. Cell Neurosci. 2014;8:293. doi: 10.3389/fncel.2014.00293. PubMed DOI PMC
Giamanco KA, Morawski M, Matthews RT. Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience. 2010;170:1314–1327. doi: 10.1016/j.neuroscience.2010.08.032. PubMed DOI
Irvine SF, Kwok JCF. Perineuronal nets in spinal motoneurones: Chondroitin sulphate proteoglycan around alpha motoneurones. Int. J. Mol. Sci. 2018;19:E1172. doi: 10.3390/ijms19041172. PubMed DOI PMC
Sorg BA, et al. Casting a wide net: Role of perineuronal nets in neural plasticity. J. Neurosci. 2016;36:11459–11468. doi: 10.1523/JNEUROSCI.2351-16.2016. PubMed DOI PMC
Bradbury EJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI
García-Alías G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 2009;12:1145–1151. doi: 10.1038/nn.2377. PubMed DOI
Smith CC, et al. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res. Bull. 2015;111:20–26. doi: 10.1016/j.brainresbull.2014.12.005. PubMed DOI
Al’joboori YD, Edgerton VR, Ichiyama RM. Effects of rehabilitation on perineural nets and synaptic plasticity following spinal cord transection. Brain Sci. 2020;10:E824. doi: 10.3390/brainsci10110824. PubMed DOI PMC
Stephenson EL, et al. Targeting the chondroitin sulfate proteoglycans: Evaluating fluorinated glucosamines and xylosides in screens pertinent to multiple sclerosis. ACS Cent. Sci. 2019;5:1223–1234. doi: 10.1021/acscentsci.9b00327. PubMed DOI PMC
Dubisova J, et al. Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice. Brain Res. Bull. 2022;181:144–156. doi: 10.1016/j.brainresbull.2022.01.011. PubMed DOI PMC
Nagy N, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front. Immunol. 2015;6:123. doi: 10.3389/fimmu.2015.00123. PubMed DOI PMC
Nagy N, et al. 4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition. J. Biol. Chem. 2019;294:7864–7877. doi: 10.1074/jbc.RA118.006166. PubMed DOI PMC
Galgoczi E, et al. Characteristics of hyaluronan synthesis inhibition by 4-methylumbelliferone in orbital fibroblasts. Invest. Ophthalmol. Vis. Sci. 2020;61:27. doi: 10.1167/iovs.61.2.27. PubMed DOI PMC
Kakizaki I, et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J. Biol. Chem. 2004;279:33281–33289. doi: 10.1074/jbc.M405918200. PubMed DOI
Kultti A, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell Res. 2009;315:1914–1923. doi: 10.1016/j.yexcr.2009.03.002. PubMed DOI
Štěpánková, K. et al. 4-Methylumbeliferone treatment at a dose of 1.2 g/kg/day is safe for long-term usage in rats. Int. J. Mol. Sci.24, 3799 (2023). PubMed PMC
Kwok, J. C. F., Foscarin, S. & Fawcett, J. W. Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix. in Extracellular Matrix (eds. Leach, J. B. & Powell, E. M.) 23–32 (Springer, 2015). 10.1007/978-1-4939-2083-9_3.
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal nets: Plasticity, protection, and therapeutic potential. Trends Neurosci. 2019;42:458–470. doi: 10.1016/j.tins.2019.04.003. PubMed DOI
Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin. Cell Dev. Biol. 2019;89:125–135. doi: 10.1016/j.semcdb.2018.09.011. PubMed DOI
Asher R, Perides G, Vanderhaeghen JJ, Bignami A. Extracellular matrix of central nervous system white matter: Demonstration of an hyaluronate-protein complex. J. Neurosci. Res. 1991;28:410–421. doi: 10.1002/jnr.490280314. PubMed DOI
Struve J, et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia. 2005;52:16–24. doi: 10.1002/glia.20215. PubMed DOI
Back SA, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 2005;11:966–972. doi: 10.1038/nm1279. PubMed DOI
Kuipers HF, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc. Natl. Acad. Sci. U S A. 2016;113:1339–1344. doi: 10.1073/pnas.1525086113. PubMed DOI PMC
Deepa SS, Yamada S, Fukui S, Sugahara K. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology. 2007;17:631–645. doi: 10.1093/glycob/cwm021. PubMed DOI
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 2014;40:26–59. doi: 10.1111/nan.12114. PubMed DOI
Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 2011;31:9332–9344. doi: 10.1523/JNEUROSCI.0983-11.2011. PubMed DOI PMC
Nori S, et al. Human oligodendrogenic neural progenitor cells delivered with chondroitinase ABC facilitate functional repair of chronic spinal cord injury. Stem Cell Rep. 2018;11:1433–1448. doi: 10.1016/j.stemcr.2018.10.017. PubMed DOI PMC
Weigel PH. Hyaluronan synthase: The mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int. J. Cell Biol. 2015;2015:367579. doi: 10.1155/2015/367579. PubMed DOI PMC
Basso DM. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: Implications of basic science research for human spinal cord injury. Phys. Ther. 2000;80:808–817. doi: 10.1093/ptj/80.8.808. PubMed DOI
Kjell J, Olson L. Rat models of spinal cord injury: From pathology to potential therapies. Dis. Model Mech. 2016;9:1125–1137. doi: 10.1242/dmm.025833. PubMed DOI PMC
Stichel CC, Müller HW. Extensive and long-lasting changes of glial cells following transection of the postcommissural fornix in the adult rat. Glia. 1994;10:89–100. doi: 10.1002/glia.440100203. PubMed DOI
Hu R, et al. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J. Neurosurg. Spine. 2010;13:169–180. doi: 10.3171/2010.3.SPINE09190. PubMed DOI
Oudega M, Bradbury EJ, Ramer MS. Combination therapies. Handb. Clin. Neurol. 2012;109:617–636. doi: 10.1016/B978-0-444-52137-8.00038-3. PubMed DOI
Fawcett JW, Curt A. Damage control in the nervous system: Rehabilitation in a plastic environment. Nat. Med. 2009;15:735–736. doi: 10.1038/nm0709-735. PubMed DOI
Kanagal SG, Muir GD. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Exp. Neurol. 2009;216:193–206. doi: 10.1016/j.expneurol.2008.11.028. PubMed DOI
Jacobs, B. L., Martín-Cora, F. J. & Fornal, C. A. Activity of medullary serotonergic neurons in freely moving animals. Brain Res. Rev.40, 45–52 (2002). PubMed
Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG. Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 2008;57:183–191. doi: 10.1016/j.brainresrev.2007.07.019. PubMed DOI
Murray KC, et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 2010;16:694–700. doi: 10.1038/nm.2160. PubMed DOI PMC
Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res. Bull. 2000;53:689–710. doi: 10.1016/S0361-9230(00)00402-0. PubMed DOI
Hayashi Y, et al. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp. Neurol. 2010;221:68–78. doi: 10.1016/j.expneurol.2009.10.003. PubMed DOI PMC
Harvey PJ, Li X, Li Y, Bennett DJ. 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 2006;96:1158–1170. doi: 10.1152/jn.01088.2005. PubMed DOI PMC
Chen B, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell. 2018;174:1599. doi: 10.1016/j.cell.2018.08.050. PubMed DOI PMC
Barzilay R, et al. CD44 deficiency is associated with increased susceptibility to stress-induced anxiety-like behavior in mice. J. Mol. Neurosci. 2016;60:548–558. doi: 10.1007/s12031-016-0835-3. PubMed DOI
Perrier J-F, Delgado-Lezama R. Synaptic release of serotonin induced by stimulation of the raphe nucleus promotes plateau potentials in spinal motoneurons of the adult turtle. J. Neurosci. 2005;25:7993–7999. doi: 10.1523/JNEUROSCI.1957-05.2005. PubMed DOI PMC
Perrier J-F, Hounsgaard J. 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. J. Neurophysiol. 2003;89:954–959. doi: 10.1152/jn.00753.2002. PubMed DOI
Harvey PJ, Li Y, Li X, Bennett DJ. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats. J. Neurophysiol. 2006;96:1141–1157. doi: 10.1152/jn.00335.2005. PubMed DOI PMC
Bennett DJ, et al. Spasticity in rats with sacral spinal cord injury. J. Neurotrauma. 1999;16:69–84. doi: 10.1089/neu.1999.16.69. PubMed DOI
Bennett DJ, Sanelli L, Cooke CL, Harvey PJ, Gorassini MA. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J. Neurophysiol. 2004;91:2247–2258. doi: 10.1152/jn.00946.2003. PubMed DOI
Button DC, et al. Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection? J. Physiol. 2008;586:529–544. doi: 10.1113/jphysiol.2007.141499. PubMed DOI PMC
Barbeau H, Fung J, Leroux A, Ladouceur M. A review of the adaptability and recovery of locomotion after spinal cord injury. Prog. Brain Res. 2002;137:9–25. doi: 10.1016/S0079-6123(02)37004-3. PubMed DOI
Wirz M, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch. Phys. Med. Rehabil. 2005;86:672–680. doi: 10.1016/j.apmr.2004.08.004. PubMed DOI
Ballermann M, Fouad K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur. J. Neurosci. 2006;23:1988–1996. doi: 10.1111/j.1460-9568.2006.04726.x. PubMed DOI
Bareyre FM, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 2004;7:269–277. doi: 10.1038/nn1195. PubMed DOI
Courtine G, et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 2008;14:69–74. doi: 10.1038/nm1682. PubMed DOI PMC
Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain. 2006;129:1534–1545. doi: 10.1093/brain/awl087. PubMed DOI
Hawthorne AL, et al. The unusual response of serotonergic neurons after CNS Injury: Lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J. Neurosci. 2011;31:5605–5616. doi: 10.1523/JNEUROSCI.6663-10.2011. PubMed DOI PMC
Skene JH, Willard M. Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J. Neurosci. 1981;1:419–426. doi: 10.1523/JNEUROSCI.01-04-00419.1981. PubMed DOI PMC
Jacobson RD, Virág I, Skene JH. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J. Neurosci. 1986;6:1843–1855. doi: 10.1523/JNEUROSCI.06-06-01843.1986. PubMed DOI PMC
Donovan SL, Mamounas LA, Andrews AM, Blue ME, McCasland JS. GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J. Neurosci. 2002;22:3543–3552. doi: 10.1523/JNEUROSCI.22-09-03543.2002. PubMed DOI PMC
Bendotti C, Servadio A, Samanin R. Distribution of GAP-43 mRNA in the brain stem of adult rats as evidenced by in situ hybridization: Localization within monoaminergic neurons. J. Neurosci. 1991;11:600–607. doi: 10.1523/JNEUROSCI.11-03-00600.1991. PubMed DOI PMC
Vigetti D, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19:537–546. doi: 10.1093/glycob/cwp022. PubMed DOI
Abate A, et al. Hymecromone in the treatment of motor disorders of the bile ducts: A multicenter, double-blind, placebo-controlled clinical study. Drugs Exp. Clin. Res. 2001;27:223–231. PubMed
Camarri E, Marchettini G. Hymecromone in the treatment of symptoms following surgery of the bile ducts. Recent. Prog. Med. 1988;79:198–202. PubMed
Krawzak HW, Heistermann HP, Andrejewski K, Hohlbach G. Postprandial bile-duct kinetics under the influence of 4-methylumbelliferone (hymecromone) Int. J. Clin. Pharmacol. Ther. 1995;33:569–572. PubMed
Quaranta S, Rossetti S, Camarri E. Double-blind clinical study on hymecromone and placebo in motor disorders of the bile ducts after cholecystectomy. Clin. Ter. 1984;108:513–517. PubMed
Trabucchi E, et al. Controlled study of the effects of tiropramide on biliary dyskinesia. Pharmatherapeutica. 1986;4:541–550. PubMed
Walter P, Seidel W. Studies on the effect of 4-methyl-umbelliferon (Hymecromone) in patients following surgical revision of the biliary pathways. Chirurg. 1979;50:436–440. PubMed
Hoffmann RM, Schwarz G, Pohl C, Ziegenhagen DJ, Kruis W. Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility. Dtsch Med. Wochenschr. 2005;130:1938–1943. doi: 10.1055/s-2005-872606. PubMed DOI
Sengupta P. The laboratory rat: Relating its age with human’s. Int. J. Prev. Med. 2013;4:624–630. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI
Metz GA, Whishaw IQ. The ladder rung walking task: A scoring system and its practical application. J. Vis. Exp. 2009;1204:1. doi: 10.3791/1204. PubMed DOI PMC