• This record comes from PubMed

Low oral dose of 4-methylumbelliferone reduces glial scar but is insufficient to induce functional recovery after spinal cord injury

. 2023 Nov 06 ; 13 (1) : 19183. [epub] 20231106

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Wellcome Trust - United Kingdom
MR/S011110/1 Medical Research Council - United Kingdom
WT104818MA Wellcome Trust - United Kingdom
MC-PC-16050 Medical Research Council - United Kingdom

Links

PubMed 37932336
PubMed Central PMC10628150
DOI 10.1038/s41598-023-46539-5
PII: 10.1038/s41598-023-46539-5
Knihovny.cz E-resources

Spinal cord injury (SCI) induces the upregulation of chondroitin sulfate proteoglycans (CSPGs) at the glial scar and inhibits neuroregeneration. Under normal physiological condition, CSPGs interact with hyaluronan (HA) and other extracellular matrix on the neuronal surface forming a macromolecular structure called perineuronal nets (PNNs) which regulate neuroplasticity. 4-methylumbelliferone (4-MU) is a known inhibitor for HA synthesis but has not been tested in SCI. We first tested the effect of 4-MU in HA reduction in uninjured rats. After 8 weeks of 4-MU administration at a dose of 1.2 g/kg/day, we have not only observed a reduction of HA in the uninjured spinal cords but also a down-regulation of CS glycosaminoglycans (CS-GAGs). In order to assess the effect of 4-MU in chronic SCI, six weeks after Th8 spinal contusion injury, rats were fed with 4-MU or placebo for 8 weeks in combination with daily treadmill rehabilitation for 16 weeks to promote neuroplasticity. 4-MU treatment reduced the HA synthesis by astrocytes around the lesion site and increased sprouting of 5-hydroxytryptamine fibres into ventral horns. However, the current dose was not sufficient to suppress CS-GAG up-regulation induced by SCI. Further adjustment on the dosage will be required to benefit functional recovery after SCI.

Erratum In

PubMed

See more in PubMed

Keough MB, et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat. Commun. 2016;7:11312. doi: 10.1038/ncomms11312. PubMed DOI PMC

Pinchi E, et al. Acute spinal cord injury: A systematic review investigating miRNA families involved. Int. J. Mol. Sci. 2019;20:E1841. doi: 10.3390/ijms20081841. PubMed DOI PMC

Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. (Wars) 2011;71:281–299. doi: 10.55782/ane-2011-1848. PubMed DOI

Kaplan A, Ong Tone S, Fournier AE. Extrinsic and intrinsic regulation of axon regeneration at a crossroads. Front. Mol. Neurosci. 2015;8:27. doi: 10.3389/fnmol.2015.00027. PubMed DOI PMC

Vogelaar CF. Extrinsic and intrinsic mechanisms of axon regeneration: The need for spinal cord injury treatment strategies to address both. Neural Regen Res. 2016;11:572–574. doi: 10.4103/1673-5374.180740. PubMed DOI PMC

Nagappan PG, Chen H, Wang D-Y. Neuroregeneration and plasticity: A review of the physiological mechanisms for achieving functional recovery postinjury. Mil. Med. Res. 2020;7:30. PubMed PMC

Carulli D, Verhaagen J. An extracellular perspective on CNS maturation: Perineuronal nets and the control of plasticity. Int. J. Mol. Sci. 2021;22:2434. doi: 10.3390/ijms22052434. PubMed DOI PMC

van ’t Spijker, H. M. & Kwok, J. C. F. A sweet talk: The molecular systems of perineuronal nets in controlling neuronal communication. Front. Integr. Neurosci.11, 33 (2017). PubMed PMC

Pizzorusso T, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI

Carulli D, et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133:2331–2347. doi: 10.1093/brain/awq145. PubMed DOI

Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc. Natl. Acad. Sci. U S A. 2013;110:12456–12461. doi: 10.1073/pnas.1310158110. PubMed DOI PMC

Takahashi-IWANAGA H, Murakami T, Abe K. Three-dimensional microanatomy of perineuronal proteoglycan nets enveloping motor neurons in the rat spinal cord. J. Neurocytol. 1998;27:817–827. doi: 10.1023/A:1006955414939. PubMed DOI

Vitellaro-Zuccarello L, Bosisio P, Mazzetti S, Monti C, De Biasi S. Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. Cell Tissue Res. 2007;327:433–447. doi: 10.1007/s00441-006-0289-y. PubMed DOI

Galtrey CM, Kwok JCF, Carulli D, Rhodes KE, Fawcett JW. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 2008;27:1373–1390. doi: 10.1111/j.1460-9568.2008.06108.x. PubMed DOI

Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front. Cell Neurosci. 2014;8:293. doi: 10.3389/fncel.2014.00293. PubMed DOI PMC

Giamanco KA, Morawski M, Matthews RT. Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience. 2010;170:1314–1327. doi: 10.1016/j.neuroscience.2010.08.032. PubMed DOI

Irvine SF, Kwok JCF. Perineuronal nets in spinal motoneurones: Chondroitin sulphate proteoglycan around alpha motoneurones. Int. J. Mol. Sci. 2018;19:E1172. doi: 10.3390/ijms19041172. PubMed DOI PMC

Sorg BA, et al. Casting a wide net: Role of perineuronal nets in neural plasticity. J. Neurosci. 2016;36:11459–11468. doi: 10.1523/JNEUROSCI.2351-16.2016. PubMed DOI PMC

Bradbury EJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI

García-Alías G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 2009;12:1145–1151. doi: 10.1038/nn.2377. PubMed DOI

Smith CC, et al. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res. Bull. 2015;111:20–26. doi: 10.1016/j.brainresbull.2014.12.005. PubMed DOI

Al’joboori YD, Edgerton VR, Ichiyama RM. Effects of rehabilitation on perineural nets and synaptic plasticity following spinal cord transection. Brain Sci. 2020;10:E824. doi: 10.3390/brainsci10110824. PubMed DOI PMC

Stephenson EL, et al. Targeting the chondroitin sulfate proteoglycans: Evaluating fluorinated glucosamines and xylosides in screens pertinent to multiple sclerosis. ACS Cent. Sci. 2019;5:1223–1234. doi: 10.1021/acscentsci.9b00327. PubMed DOI PMC

Dubisova J, et al. Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice. Brain Res. Bull. 2022;181:144–156. doi: 10.1016/j.brainresbull.2022.01.011. PubMed DOI PMC

Nagy N, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front. Immunol. 2015;6:123. doi: 10.3389/fimmu.2015.00123. PubMed DOI PMC

Nagy N, et al. 4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition. J. Biol. Chem. 2019;294:7864–7877. doi: 10.1074/jbc.RA118.006166. PubMed DOI PMC

Galgoczi E, et al. Characteristics of hyaluronan synthesis inhibition by 4-methylumbelliferone in orbital fibroblasts. Invest. Ophthalmol. Vis. Sci. 2020;61:27. doi: 10.1167/iovs.61.2.27. PubMed DOI PMC

Kakizaki I, et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J. Biol. Chem. 2004;279:33281–33289. doi: 10.1074/jbc.M405918200. PubMed DOI

Kultti A, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell Res. 2009;315:1914–1923. doi: 10.1016/j.yexcr.2009.03.002. PubMed DOI

Štěpánková, K. et al. 4-Methylumbeliferone treatment at a dose of 1.2 g/kg/day is safe for long-term usage in rats. Int. J. Mol. Sci.24, 3799 (2023). PubMed PMC

Kwok, J. C. F., Foscarin, S. & Fawcett, J. W. Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix. in Extracellular Matrix (eds. Leach, J. B. & Powell, E. M.) 23–32 (Springer, 2015). 10.1007/978-1-4939-2083-9_3.

Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal nets: Plasticity, protection, and therapeutic potential. Trends Neurosci. 2019;42:458–470. doi: 10.1016/j.tins.2019.04.003. PubMed DOI

Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin. Cell Dev. Biol. 2019;89:125–135. doi: 10.1016/j.semcdb.2018.09.011. PubMed DOI

Asher R, Perides G, Vanderhaeghen JJ, Bignami A. Extracellular matrix of central nervous system white matter: Demonstration of an hyaluronate-protein complex. J. Neurosci. Res. 1991;28:410–421. doi: 10.1002/jnr.490280314. PubMed DOI

Struve J, et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia. 2005;52:16–24. doi: 10.1002/glia.20215. PubMed DOI

Back SA, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 2005;11:966–972. doi: 10.1038/nm1279. PubMed DOI

Kuipers HF, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc. Natl. Acad. Sci. U S A. 2016;113:1339–1344. doi: 10.1073/pnas.1525086113. PubMed DOI PMC

Deepa SS, Yamada S, Fukui S, Sugahara K. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology. 2007;17:631–645. doi: 10.1093/glycob/cwm021. PubMed DOI

Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 2014;40:26–59. doi: 10.1111/nan.12114. PubMed DOI

Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 2011;31:9332–9344. doi: 10.1523/JNEUROSCI.0983-11.2011. PubMed DOI PMC

Nori S, et al. Human oligodendrogenic neural progenitor cells delivered with chondroitinase ABC facilitate functional repair of chronic spinal cord injury. Stem Cell Rep. 2018;11:1433–1448. doi: 10.1016/j.stemcr.2018.10.017. PubMed DOI PMC

Weigel PH. Hyaluronan synthase: The mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int. J. Cell Biol. 2015;2015:367579. doi: 10.1155/2015/367579. PubMed DOI PMC

Basso DM. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: Implications of basic science research for human spinal cord injury. Phys. Ther. 2000;80:808–817. doi: 10.1093/ptj/80.8.808. PubMed DOI

Kjell J, Olson L. Rat models of spinal cord injury: From pathology to potential therapies. Dis. Model Mech. 2016;9:1125–1137. doi: 10.1242/dmm.025833. PubMed DOI PMC

Stichel CC, Müller HW. Extensive and long-lasting changes of glial cells following transection of the postcommissural fornix in the adult rat. Glia. 1994;10:89–100. doi: 10.1002/glia.440100203. PubMed DOI

Hu R, et al. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J. Neurosurg. Spine. 2010;13:169–180. doi: 10.3171/2010.3.SPINE09190. PubMed DOI

Oudega M, Bradbury EJ, Ramer MS. Combination therapies. Handb. Clin. Neurol. 2012;109:617–636. doi: 10.1016/B978-0-444-52137-8.00038-3. PubMed DOI

Fawcett JW, Curt A. Damage control in the nervous system: Rehabilitation in a plastic environment. Nat. Med. 2009;15:735–736. doi: 10.1038/nm0709-735. PubMed DOI

Kanagal SG, Muir GD. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Exp. Neurol. 2009;216:193–206. doi: 10.1016/j.expneurol.2008.11.028. PubMed DOI

Jacobs, B. L., Martín-Cora, F. J. & Fornal, C. A. Activity of medullary serotonergic neurons in freely moving animals. Brain Res. Rev.40, 45–52 (2002). PubMed

Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG. Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 2008;57:183–191. doi: 10.1016/j.brainresrev.2007.07.019. PubMed DOI

Murray KC, et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 2010;16:694–700. doi: 10.1038/nm.2160. PubMed DOI PMC

Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res. Bull. 2000;53:689–710. doi: 10.1016/S0361-9230(00)00402-0. PubMed DOI

Hayashi Y, et al. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp. Neurol. 2010;221:68–78. doi: 10.1016/j.expneurol.2009.10.003. PubMed DOI PMC

Harvey PJ, Li X, Li Y, Bennett DJ. 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 2006;96:1158–1170. doi: 10.1152/jn.01088.2005. PubMed DOI PMC

Chen B, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell. 2018;174:1599. doi: 10.1016/j.cell.2018.08.050. PubMed DOI PMC

Barzilay R, et al. CD44 deficiency is associated with increased susceptibility to stress-induced anxiety-like behavior in mice. J. Mol. Neurosci. 2016;60:548–558. doi: 10.1007/s12031-016-0835-3. PubMed DOI

Perrier J-F, Delgado-Lezama R. Synaptic release of serotonin induced by stimulation of the raphe nucleus promotes plateau potentials in spinal motoneurons of the adult turtle. J. Neurosci. 2005;25:7993–7999. doi: 10.1523/JNEUROSCI.1957-05.2005. PubMed DOI PMC

Perrier J-F, Hounsgaard J. 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. J. Neurophysiol. 2003;89:954–959. doi: 10.1152/jn.00753.2002. PubMed DOI

Harvey PJ, Li Y, Li X, Bennett DJ. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats. J. Neurophysiol. 2006;96:1141–1157. doi: 10.1152/jn.00335.2005. PubMed DOI PMC

Bennett DJ, et al. Spasticity in rats with sacral spinal cord injury. J. Neurotrauma. 1999;16:69–84. doi: 10.1089/neu.1999.16.69. PubMed DOI

Bennett DJ, Sanelli L, Cooke CL, Harvey PJ, Gorassini MA. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J. Neurophysiol. 2004;91:2247–2258. doi: 10.1152/jn.00946.2003. PubMed DOI

Button DC, et al. Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection? J. Physiol. 2008;586:529–544. doi: 10.1113/jphysiol.2007.141499. PubMed DOI PMC

Barbeau H, Fung J, Leroux A, Ladouceur M. A review of the adaptability and recovery of locomotion after spinal cord injury. Prog. Brain Res. 2002;137:9–25. doi: 10.1016/S0079-6123(02)37004-3. PubMed DOI

Wirz M, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch. Phys. Med. Rehabil. 2005;86:672–680. doi: 10.1016/j.apmr.2004.08.004. PubMed DOI

Ballermann M, Fouad K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur. J. Neurosci. 2006;23:1988–1996. doi: 10.1111/j.1460-9568.2006.04726.x. PubMed DOI

Bareyre FM, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 2004;7:269–277. doi: 10.1038/nn1195. PubMed DOI

Courtine G, et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 2008;14:69–74. doi: 10.1038/nm1682. PubMed DOI PMC

Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain. 2006;129:1534–1545. doi: 10.1093/brain/awl087. PubMed DOI

Hawthorne AL, et al. The unusual response of serotonergic neurons after CNS Injury: Lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J. Neurosci. 2011;31:5605–5616. doi: 10.1523/JNEUROSCI.6663-10.2011. PubMed DOI PMC

Skene JH, Willard M. Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J. Neurosci. 1981;1:419–426. doi: 10.1523/JNEUROSCI.01-04-00419.1981. PubMed DOI PMC

Jacobson RD, Virág I, Skene JH. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J. Neurosci. 1986;6:1843–1855. doi: 10.1523/JNEUROSCI.06-06-01843.1986. PubMed DOI PMC

Donovan SL, Mamounas LA, Andrews AM, Blue ME, McCasland JS. GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J. Neurosci. 2002;22:3543–3552. doi: 10.1523/JNEUROSCI.22-09-03543.2002. PubMed DOI PMC

Bendotti C, Servadio A, Samanin R. Distribution of GAP-43 mRNA in the brain stem of adult rats as evidenced by in situ hybridization: Localization within monoaminergic neurons. J. Neurosci. 1991;11:600–607. doi: 10.1523/JNEUROSCI.11-03-00600.1991. PubMed DOI PMC

Vigetti D, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19:537–546. doi: 10.1093/glycob/cwp022. PubMed DOI

Abate A, et al. Hymecromone in the treatment of motor disorders of the bile ducts: A multicenter, double-blind, placebo-controlled clinical study. Drugs Exp. Clin. Res. 2001;27:223–231. PubMed

Camarri E, Marchettini G. Hymecromone in the treatment of symptoms following surgery of the bile ducts. Recent. Prog. Med. 1988;79:198–202. PubMed

Krawzak HW, Heistermann HP, Andrejewski K, Hohlbach G. Postprandial bile-duct kinetics under the influence of 4-methylumbelliferone (hymecromone) Int. J. Clin. Pharmacol. Ther. 1995;33:569–572. PubMed

Quaranta S, Rossetti S, Camarri E. Double-blind clinical study on hymecromone and placebo in motor disorders of the bile ducts after cholecystectomy. Clin. Ter. 1984;108:513–517. PubMed

Trabucchi E, et al. Controlled study of the effects of tiropramide on biliary dyskinesia. Pharmatherapeutica. 1986;4:541–550. PubMed

Walter P, Seidel W. Studies on the effect of 4-methyl-umbelliferon (Hymecromone) in patients following surgical revision of the biliary pathways. Chirurg. 1979;50:436–440. PubMed

Hoffmann RM, Schwarz G, Pohl C, Ziegenhagen DJ, Kruis W. Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility. Dtsch Med. Wochenschr. 2005;130:1938–1943. doi: 10.1055/s-2005-872606. PubMed DOI

Sengupta P. The laboratory rat: Relating its age with human’s. Int. J. Prev. Med. 2013;4:624–630. PubMed PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI

Metz GA, Whishaw IQ. The ladder rung walking task: A scoring system and its practical application. J. Vis. Exp. 2009;1204:1. doi: 10.3791/1204. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...