Plant nucleoside N-ribohydrolases: riboside binding and role in nitrogen storage mobilization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-07661S
Czech Science Foundation
57334672
DAAD
RO0423
Ministry of Agriculture, Czech Republic
7AMB17DE009
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education, Youth and Sports of the Czech Republic
JG_2020_001
Palacký University
PubMed
38044809
DOI
10.1111/tpj.16572
Knihovny.cz E-zdroje
- Klíčová slova
- Physcomitrella patens, Zea mays, crystal structure, cytokinin, nitrogen starvation, nucleoside N-ribohydrolase, overexpression, polyamine, purine,
- MeSH
- Arabidopsis * genetika MeSH
- dusík metabolismus MeSH
- nukleosidy * metabolismus MeSH
- rostliny metabolismus MeSH
- šlechtění rostlin MeSH
- uridin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- nukleosidy * MeSH
- uridin MeSH
Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as β-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.
Institute of Plant Science and Microbiology Universität Hamburg Ohnhorststr 18 22609 Hamburg Germany
Zobrazit více v PubMed
Abdelhakim, L.O.A., Mendanha, T., Palma, C.F.F., Vrobel, O., Štefelová, N., Ćavar Zeljković, S. et al. (2022) Elevated CO2 improves the physiology but not the final yield in spring wheat genotypes subjected to heat and drought stress during anthesis. Frontiers in Plant Science, 13, 824476. Available from: https://doi.org/10.3389/fpls.2022.824476
Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P. et al. (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28, 1867-1876. Available from: https://doi.org/10.1007/s10529-006-9179-3
Applewhite, P.B., Kaur-Sawhney, R. & Galston, A.W. (2010) A role for spermidine in the bolting and flowering of Arabidopsis. Physiologia Plantarum, 108, 314-320. Available from: https://doi.org/10.1034/j.1399-3054.2000.108003314.x
Ashihara, H., Stasolla, C., Fujimura, T. & Crozier, A. (2018) Purine salvage in plants. Phytochemistry, 147, 89-124. Available from: https://doi.org/10.1016/j.phytochem.2017.12.008
Baccolini, C. & Witte, C.P. (2019) AMP and GMP catabolism in Arabidopsis converge on xanthosine, which is degraded by a nucleoside hydrolase heterocomplex. Plant Cell, 31, 734-751. Available from: https://doi.org/10.1105/tpc.18.00899
Beau, I., Esclatine, A. & Codogno, P. (2008) Lost to translation: when autophagy targets mature ribosomes. Trends in Cell Biology, 18, 311-314. Available from: https://doi.org/10.1016/j.tcb.2008.05.001
Bělíček, J., Ľuptáková, E., Kopečný, D., Frömmel, J., Vigouroux, A., Ćavar Zeljković, S. et al. (2023) Biochemical and structural basis of polyamine, lysine and ornithine acetylation catalyzed by spermine/spermidine N-acetyl transferase in moss and maize. The Plant Journal, 114, 482-498. Available from: https://doi.org/10.1111/tpj.16148
Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W. et al. (2011) BUSTER version 2.1.0. Cambridge, United Kingdom: Global Phasing Ltd.
Bromley, J.R., Warnes, B.J., Newell, C.A., Thomson, J.C., James, C.M., Turnbull, C.G. et al. (2014) A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. The Biochemical Journal, 458, 225-237. Available from: https://doi.org/10.1042/BJ20130792
Chen, D., Shao, Q., Yin, L., Younis, A. & Zheng, B. (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science, 9, 1945. Available from: https://doi.org/10.3389/fpls.2018.01945
Chen, M., Herde, M. & Witte, C.P. (2016) Of the nine cytidine deaminase-like genes in Arabidopsis, eight are pseudogenes and only one is required to maintain pyrimidine homeostasis in vivo. Plant Physiology, 171, 799-809. Available from: https://doi.org/10.1104/pp.15.02031
Chen, Q., Wang, Y., Zhang, Z., Liu, X., Li, C. & Ma, F. (2022) Arginine increases tolerance to nitrogen deficiency in Malus hupehensis via alterations in photosynthetic capacity and amino acids metabolism. Frontiers in Plant Science, 12, 772086. Available from: https://doi.org/10.3389/fpls.2021.772086
Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J. et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66, 12-21. Available from: https://doi.org/10.1107/S0907444909042073
Cornelius, S., Traub, M., Bernard, C., Salzig, C., Lang, P. & Möhlmann, T. (2012) Nucleoside transport across the plasma membrane mediated by equilibrative nucleoside transporter 3 influences metabolism of Arabidopsis seedlings. Plant Biology, 14, 696-705. Available from: https://doi.org/10.1111/j.1438-8677.2012.00562.x
Dahncke, K. & Witte, C.P. (2013) Plant purine nucleoside catabolism employs a guanosine deaminase required for the generation of xanthosine in Arabidopsis. Plant Cell, 25, 4101-4109. Available from: https://doi.org/10.1105/tpc.113.117184
De Diego, N., Fürst, T., Humplík, J.F., Ugena, L., Podlešáková, K. & Spíchal, L. (2017) An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Frontiers in Plant Science, 8, 1702. Available from: https://doi.org/10.3389/fpls.2017.01702
Duhazé, C., Gagneul, D., Leport, L., Larher, F. & Bouchereau, A. (2003) Uracil as one of the multiple sources of β-alanine in Limonium latifolium a halotolerant β-alanine betaine accumulating Plumbaginaceae. Plant Physiology and Biochemistry, 41, 993-998. Available from: https://doi.org/10.1016/J.PLAPHY.2003.06.002
Emsley, P. & Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D, 60, 2126-2132. Available from: https://doi.org/10.1107/S0907444904019158
Garau, G., Muzzolini, L., Tornaghi, P. & Degano, M. (2010) Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor. BMC Structural Biology, 10, 14. Available from: https://doi.org/10.1186/1472-6807-10-14
Giabbai, B. & Degano, M. (2004) Crystal structure to 1.7 Å of the Escherichia coli pyrimidine nucleoside hydrolase YeiK, a novel candidate for cancer gene therapy. Structure, 12, 739-749. Available from: https://doi.org/10.1016/j.str.2004.03.018
Girke, C., Daumann, M., Niopek-Witz, S. & Möhlmann, T. (2014) Nucleobase and nucleoside transport and integration into plant metabolism. Frontiers in Plant Science, 5, 443. Available from: https://doi.org/10.3389/fpls.2014.00443
Gopaul, D.N., Meyer, S.L., Degano, M., Sacchettini, J.C. & Schramm, V.L. (1996) Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry, 35, 5963-5970. Available from: https://doi.org/10.1021/bi952998u
Hirose, N., Makita, N., Yamaya, T. & Sakakibara, H. (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiology, 138, 196-206. Available from: https://doi.org/10.1104/pp.105.060137
Hoffmann, W.A. & Poorter, H. (2002) Avoiding bias in calculations of relative growth rate. Annals of Botany, 90, 37-42. Available from: https://doi.org/10.1093/aob/mcf140
Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H. et al. (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiology, 135, 1565-1573. Available from: https://doi.org/10.1104/pp.104.041699
Iovane, E., Giabbai, B., Muzzolini, L., Matafora, V., Fornili, A., Minici, C. et al. (2008) Structural basis for substrate specificity in group I nucleoside hydrolases. Biochemistry, 47, 4418-4426. Available from: https://doi.org/10.1021/bi702448s
Jung, B., Flörchinger, M., Kunz, H.H., Traub, M., Wartenberg, R., Jeblick, W. et al. (2009) Uridine-ribohydrolase is a key regulator in the uridine degradation pathway of Arabidopsis. Plant Cell, 21, 876-891. Available from: https://doi.org/10.1105/tpc.108.062612
Jung, B., Hoffmann, C. & Möhlmann, T. (2011) Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. The Plant Journal, 65, 703-711. Available from: https://doi.org/10.1111/j.1365-313X.2010.04455.x
Kabsch, W. (2010) XDS. Acta Cryst. D, 66, 125-132. Available from: https://doi.org/10.1107/S0907444909047337
Karplus, P.A. & Diederichs, K. (2012) Linking crystallographic model and data quality. Science, 336, 1030-1033. Available from: https://doi.org/10.1126/science.1218231
Končitíková, R., Vigouroux, A., Kopečná, M., Andree, T., Bartoš, J., Šebela, M. et al. (2015) Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. The Biochemical Journal, 468, 109-123. Available from: https://doi.org/10.1042/BJ20150009
Kopečná, M., Blaschke, H., Kopečný, D., Vigouroux, A., Končitíková, R., Novák, O. et al. (2013) Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides. Plant Physiology, 163, 1568-1583. Available from: https://doi.org/10.1104/pp.113.228775
Kopečný, D., Končitíková, R., Tylichová, M., Vigouroux, A., Moskalíková, H., Soural, M. et al. (2013) Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. The Journal of Biological Chemistry, 288, 9491-9507. Available from: https://doi.org/10.1074/jbc.M112.443952
Koshio, A., Hasegawa, T., Okada, R. & Takeno, K. (2015) Endogenous factors regulating poor-nutrition stress-induced flowering in Pharbitis: the involvement of metabolic pathways regulated by aminooxyacetic acid. Journal of Plant Physiology, 173, 82-88. Available from: https://doi.org/10.1016/j.jplph.2014.09.004
Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biology, 10, 602-610. Available from: https://doi.org/10.1038/ncb1723
Lindemalm, S., Liliemark, J., Juliusson, G., Larsson, R. & Albertioni, F. (2004) Cytotoxicity and pharmacokinetics of cladribine metabolite, 2-chloroadenine in patients with leukemia. Cancer Letters, 210, 171-177. Available from: https://doi.org/10.1016/j.canlet.2004.03.007
Mattoo, A.K., Sobolev, A.P., Neelam, A., Goyal, R.K., Handa, A.K. & Segre, A.L. (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiology, 142, 1759-1770. Available from: https://doi.org/10.1104/pp.106.084400
Melino, V.J., Casartelli, A., George, J., Rupasinghe, T., Roessner, U., Okamoto, M. et al. (2018) RNA catabolites contribute to the nitrogen Pool and support growth recovery of wheat. Frontiers in Plant Science, 9, 1539. Available from: https://doi.org/10.3389/fpls.2018.01539
Mellidou, I., Moschou, P.N., Ioannidis, N.E., Pankou, C., Gėmes, K., Valassakis, C. et al. (2016) Silencing S-adenosyl-L-methionine decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Frontiers in Plant Science, 7, 379. Available from: https://doi.org/10.3389/fpls.2016.00379
Moffatt, B. & Somerville, C. (1988) Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiology, 86, 1150-1154. Available from: https://doi.org/10.1104/pp.86.4.1150
Moffatt, B.A., Stevens, Y.Y., Allen, M.S., Snider, J.D., Pereira, L.A., Todorova, M.I. et al. (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiology, 128, 812-821. Available from: https://doi.org/10.1104/pp.010880
Mok, D.W.S. & Mok, M.C. (2001) Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89-118. Available from: https://doi.org/10.1146/annurev.arplant.52.1.89
Muzzolini, L., Versées, W., Tornaghi, P., Van Holsbeke, E., Steyaert, J. & Degano, M. (2006) New insights into the mechanism of nucleoside hydrolases from the crystal structure of the Escherichia coli YbeK protein bound to the reaction product. Biochemistry, 45, 773-782. Available from: https://doi.org/10.1021/bi0511991
Novák, O., Hauserová, E., Amakorová, P., Doležal, K. & Strnad, M. (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69, 2214-2224. Available from: https://doi.org/10.1016/j.phytochem.2008.04.022
O'Donoghue, E.M., Somerfield, S.D., Shaw, M., Bendall, M., Hedderly, D., Eason, J. et al. (2004) Evaluation of carbohydrates in pukekohe longkeeper and Grano cultivars of Allium cepa. Journal of Agricultural and Food Chemistry, 52, 5383-5390. Available from: https://doi.org/10.1021/jf030832r
Pál, M., Tajti, J., Szalai, G., Peeva, V., Végh, B. & Janda, T. (2018) Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Scientific Reports, 8, 12839. Available from: https://doi.org/10.1038/s41598-018-31297-6
Parthasarathy, A., Savka, M.A. & Hudson, A.O. (2019) The synthesis and role of β-alanine in plants. Frontiers in Plant Science, 10, 921. Available from: https://doi.org/10.3389/fpls.2019.00921
Riegler, H., Geserick, C. & Zrenner, R. (2011) Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. The New Phytologist, 191, 349-359. Available from: https://doi.org/10.1111/j.1469-8137.2011.03711.x
Riggs, J.W., Rockwell, N.C., Cavales, P.C. & Callis, J. (2016) Identification of the plant ribokinase and discovery of a role for Arabidopsis ribokinase in nucleoside metabolism. The Journal of Biological Chemistry, 291, 22572-22582. Available from: https://doi.org/10.1074/jbc.M116.754689
Sakakibara, H. (2006) Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431-449. Available from: https://doi.org/10.1146/annurev.arplant.57.032905.105231
Sauter, M., Moffatt, B., Saechao, M.C., Hell, R. & Wirtz, M. (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. The Biochemical Journal, 451, 145-154. Available from: https://doi.org/10.1042/BJ20121744
Schoor, S., Farrow, S., Blaschke, H., Lee, S., Perry, G., von Schwartzenberg, K. et al. (2011) Adenosine kinase contributes to cytokinin interconversion in Arabidopsis. Plant Physiology, 157, 659-672. Available from: https://doi.org/10.1104/pp.111.181560
Seifi, H.S. & Shelp, B.J. (2019) Spermine differentially refines plant defense responses against biotic and abiotic stresses. Frontiers in Plant Science, 10, 117. Available from: https://doi.org/10.3389/fpls.2019.00117
Storoni, L.C., McCoy, A.J. & Read, R.J. (2004) Likelihood-enhanced fast rotation functions. Acta Crystallographica. Section D, Biological Crystallography, 60, 432-438. Available from: https://doi.org/10.1107/S0907444903028956
Takeno, K. (2016) Stress-induced flowering: the third category of flowering response. Journal of Experimental Botany, 67, 4925-4934. Available from: https://doi.org/10.1093/jxb/erw272
Ugena, L., Hýlová, A., Podlešáková, K., Humplík, J.F., Doležal, K., Diego, N. et al. (2018) Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Frontiers in Plant Science, 9, 1327. Available from: https://doi.org/10.3389/fpls.2018.01327
Versées, W. & Steyaert, J. (2003) Catalysis by nucleoside hydrolases. Current Opinion in Structural Biology, 13, 731-738. Available from: https://doi.org/10.1016/j.sbi.2003.10.002
Wielopolska, A., Townley, H., Moore, I., Waterhouse, P. & Helliwell, C. (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnology Journal, 3, 583-590. Available from: https://doi.org/10.1111/j.1467-7652.2005.00149.x
Wilkinson, D.S., Tlsty, T.D. & Hanas, R.J. (1975) The inhibition of ribosomal RNA synthesis and maturation in Novikoff hepatoma cells by 5-fluorouridine. Cancer Research, 35, 3014-3020.
Winter, G., Todd, C.D., Trovato, M., Forlani, G. & Funck, D. (2015) Physiological implications of arginine metabolism in plants. Frontiers in Plant Science, 6, 534. Available from: https://doi.org/10.3389/fpls.2015.00534
Wormit, A., Traub, M., Flörchinger, M., Neuhaus, H.E. & Möhlmann, T. (2004) Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. The Biochemical Journal, 383, 19-26. Available from: https://doi.org/10.1042/BJ20040389
Xu, J., Zhang, H.Y., Xie, C.H., Xue, H.W., Dijkhuis, P. & Liu, C.M. (2005) EMBRYONIC FACTOR 1 encodes an AMP deaminase and is essential for the zygote to embryo transition in Arabidopsis. The Plant Journal, 42, 743-756. Available from: https://doi.org/10.1111/j.1365-313X.2005.02411.x
Zheng, Z.L. (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling & Behavior, 4, 584-591. Available from: https://doi.org/10.4161/psb.4.7.8540
Zrenner, R., Stitt, M., Sonnewald, U. & Boldt, R. (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annual Review of Plant Biology, 57, 805-836. Available from: https://doi.org/10.1146/annurev.arplant.57.032905.105421
Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites