Magnetic Yeast Glucan Particles for Antibody-Free Separation of Viable Macrophages from Drosophila melanogaster
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38048070
PubMed Central
PMC10777351
DOI
10.1021/acsbiomaterials.3c01199
Knihovny.cz E-resources
- Keywords
- cell separation, iron oxide nanoparticles, phagocytosis, spray drying, β-glucan particles,
- MeSH
- Drosophila melanogaster metabolism MeSH
- Glucans * chemistry metabolism MeSH
- Magnetic Phenomena MeSH
- Macrophages metabolism MeSH
- Saccharomyces cerevisiae * chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glucans * MeSH
Currently available methods for cell separation are generally based on fluorescent labeling using either endogenously expressed fluorescent markers or the binding of antibodies or antibody mimetics to surface antigenic epitopes. However, such modification of the target cells represents potential contamination by non-native proteins, which may affect further cell response and be outright undesirable in applications, such as cell expansion for diagnostic or therapeutic applications, including immunotherapy. We present a label- and antibody-free method for separating macrophages from living Drosophila based on their ability to preferentially phagocytose whole yeast glucan particles (GPs). Using a novel deswelling entrapment approach based on spray drying, we have successfully fabricated yeast glucan particles with the previously unachievable content of magnetic iron oxide nanoparticles while retaining their surface features responsible for phagocytosis. We demonstrate that magnetic yeast glucan particles enable macrophage separation at comparable yields to fluorescence-activated cell sorting without compromising their viability or affecting their normal function and gene expression. The use of magnetic yeast glucan particles is broadly applicable to situations where viable macrophages separated from living organisms are subsequently used for analyses, such as gene expression, metabolomics, proteomics, single-cell transcriptomics, or enzymatic activity analysis.
See more in PubMed
Hochmuth R. M. Micropipette aspiration of living cells. J. Biomech. 2000, 33 (1), 15–22. 10.1016/S0021-9290(99)00175-X. PubMed DOI
Robert D.; Pamme N.; Conjeaud H.; Gazeau F.; Iles A.; Wilhelm C. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 2011, 11 (11), 1902–1910. 10.1039/c0lc00656d. PubMed DOI
Miltenyi S.; Müller W.; Weichel W.; Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990, 11 (2), 231–238. 10.1002/cyto.990110203. PubMed DOI
Fu A. Y.; Spence C.; Scherer A.; Arnold F. H.; Quake S. R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 1999, 17 (11), 1109–1111. 10.1038/15095. PubMed DOI
Levine B. L.; Miskin J.; Wonnacott K.; Keir C. Global manufacturing of CAR T cell therapy. Molecular Therapy-Methods & Clinical Development 2017, 4, 92–101. 10.1016/j.omtm.2016.12.006. PubMed DOI PMC
Bieback K.; Fernandez-Munoz B.; Pati S.; Schäfer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Cytotherapy 2019, 21 (9), 911–924. 10.1016/j.jcyt.2019.06.006. PubMed DOI
Warkiani M. E.; Khoo B. L.; Wu L.; Tay A. K. P.; Bhagat A. A. S.; Han J.; Lim C. T. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nature protocols 2016, 11 (1), 134–148. 10.1038/nprot.2016.003. PubMed DOI
Law S. Antigen shedding and metastasis of tumour cells. Clinical and experimental immunology 2008, 85 (1), 1.10.1111/j.1365-2249.1991.tb05672.x. PubMed DOI PMC
Bajgar A.; Saloň I.; Krejčová G.; Doležal T.; Jindra M.; Štěpánek F. Yeast glucan particles enable intracellular protein delivery in Drosophila without compromising the immune system. Biomaterials Science 2019, 7 (11), 4708–4719. 10.1039/C9BM00539K. PubMed DOI
Soto E. R.; Caras A. C.; Kut L. C.; Castle M. K.; Ostroff G. R. Glucan particles for macrophage targeted delivery of nanoparticles. J. Drug Delivery 2012, 2012, 14352410.1155/2012/143524. PubMed DOI PMC
Rotrekl D.; Devriendt B.; Cox E.; Kavanová L.; Faldyna M.; Šalamúnová P.; Bad’o Z.; Prokopec V.; Štěpánek F.; Hanuš J. Glucan particles as suitable carriers for the natural anti-inflammatory compounds curcumin and diplacone–Evaluation in an ex vivo model. Int. J. Pharm. 2020, 582, 11931810.1016/j.ijpharm.2020.119318. PubMed DOI
Aouadi M.; Tesz G. J.; Nicoloro S. M.; Wang M.; Chouinard M.; Soto E.; Ostroff G. R.; Czech M. P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009, 458 (7242), 1180–1184. 10.1038/nature07774. PubMed DOI PMC
Šalamúnová P.; Krejčí T.; Ryšánek P.; Saloň I.; Kroupová J.; Hubatová-Vacková A.; Petřík J.; Grus T.; Lukáč P.; Kozlík P. Serum and lymph pharmacokinetics of nilotinib delivered by yeast glucan particles per os. Int. J. Pharm. 2023, 634, 12262710.1016/j.ijpharm.2023.122627. PubMed DOI
Saloň I.; Hanuš J.; Ulbrich P.; Štepánek F. Suspension stability and diffusion properties of yeast glucan microparticles. Food and Bioproducts Processing 2016, 99, 128–135. 10.1016/j.fbp.2016.04.010. DOI
Ruphuy G.; Saloň I.; Tomas J.; Šalamúnová P.; Hanuš J.; Štěpánek F. Encapsulation of poorly soluble drugs in yeast glucan particles by spray drying improves dispersion and dissolution properties. Int. J. Pharm. 2020, 576, 11899010.1016/j.ijpharm.2019.118990. PubMed DOI
Šalamúnová P.; Saloň I.; Ruphuy G.; Kroupová J.; Balouch M.; Hanuš J.; Štěpánek F. Evaluation of β-glucan particles as dual-function carriers for poorly soluble drugs. Eur. J. Pharm. Biopharm. 2021, 168, 15–25. 10.1016/j.ejpb.2021.08.001. PubMed DOI
Mirza Z.; Soto E. R.; Hu Y.; Nguyen T.-T.; Koch D.; Aroian R. V.; Ostroff G. R. Anthelmintic activity of yeast particle-encapsulated terpenes. Molecules 2020, 25 (13), 2958.10.3390/molecules25132958. PubMed DOI PMC
Baert K.; De Geest B. G.; De Rycke R.; Da Fonseca Antunes A. B.; De Greve H.; Cox E.; Devriendt B. β-glucan microparticles targeted to epithelial APN as oral antigen delivery system. J. Controlled Release 2015, 220, 149–159. 10.1016/j.jconrel.2015.10.025. PubMed DOI
Patel A.; Asik D.; Snyder E. M.; Dilillo A. E.; Cullen P. J.; Morrow J. R. Binding and release of FeIII complexes from glucan particles for the delivery of T1MRI contrast agents. ChemMedChem. 2020, 15 (12), 1050–1057. 10.1002/cmdc.202000003. PubMed DOI
Figueiredo S.; Moreira J. N.; Geraldes C. F. G. C.; Rizzitelli S.; Aime S.; Terreno E. Yeast cell wall particles: a promising class of nature-inspired microcarriers for multimodal imaging. Chem. Commun. 2011, 47 (38), 10635–10637. 10.1039/c1cc14019a. PubMed DOI
Hauser A. K.; Mathias R.; Anderson K. W.; Hilt J. Z. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater. Chem. Phys. 2015, 160, 177–186. 10.1016/j.matchemphys.2015.04.022. PubMed DOI PMC
Aysan A. B.; Knejzlík Z.; Ulbrich P.; Šoltys M.; Zadražil A.; Štěpánek F. Effect of surface functionalisation on the interaction of iron oxide nanoparticles with polymerase chain reaction. Colloids Surf., B 2017, 153, 69–76. 10.1016/j.colsurfb.2017.02.005. PubMed DOI
Vollmers A. C.; Mekonen H. E.; Campos S.; Carpenter S.; Vollmers C. Generation of an isoform-level transcriptome atlas of macrophage activation. J. Biol. Chem. 2021, 296, 10078410.1016/j.jbc.2021.100784. PubMed DOI PMC
Rattigan K. M.; Pountain A. W.; Regnault C.; Achcar F.; Vincent I. M.; Goodyear C. S.; Barrett M. P. Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli. PLoS One 2018, 13 (3), e019412610.1371/journal.pone.0194126. PubMed DOI PMC
Specht H.; Emmott E.; Petelski A. A.; Huffman R. G.; Perlman D. H.; Serra M.; Kharchenko P.; Koller A.; Slavov N. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 2021, 22 (1), 50.10.1186/s13059-021-02267-5. PubMed DOI PMC
Grützkau A.; Radbruch A. Small but mighty: How the MACS®-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry, Part A 2010, 77 (7), 643–647. 10.1002/cyto.a.20918. PubMed DOI
Radbruch A.; Mechtold B.; Thiel A.; Miltenyi S.; Pflüger E. High-gradient magnetic cell sorting. Methods in cell biology 1994, 42, 387–403. 10.1016/S0091-679X(08)61086-9. PubMed DOI
Zborowski M.Physics of magnetic cell sorting. In Scientific and clinical applications of magnetic carriers; Springer, 1997; pp 205–231.
Navrátil O.; Lizoňová D.; Slonková K.; Mašková L.; Zadražil A.; Sedmidubský D.; Štěpánek F. Antibiotic depot system with radiofrequency controlled drug release. Colloids Surf., B 2022, 217, 11261810.1016/j.colsurfb.2022.112618. PubMed DOI
Neyen C.; Bretscher A. J.; Binggeli O.; Lemaitre B. Methods to study Drosophila immunity. Methods 2014, 68, 116–128. 10.1016/j.ymeth.2014.02.023. PubMed DOI
DRSC FlyPrimerBank (flyrnai.org).