Lipophilic Statins Eliminate Senescent Endothelial Cells by inducing Anoikis-Related Cell Death
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
P 31743
Austrian Science Fund FWF - Austria
PubMed
38132158
PubMed Central
PMC10742095
DOI
10.3390/cells12242836
PII: cells12242836
Knihovny.cz E-resources
- Keywords
- anoikis, apoptosis, endothelial cells, senescence, senolytics, statins,
- MeSH
- Anoikis MeSH
- Endothelial Cells MeSH
- Senotherapeutics MeSH
- Humans MeSH
- Aged MeSH
- Cellular Senescence * MeSH
- Hydroxymethylglutaryl-CoA Reductase Inhibitors * pharmacology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Senotherapeutics MeSH
- Hydroxymethylglutaryl-CoA Reductase Inhibitors * MeSH
Pre-clinical studies from the recent past have indicated that senescent cells can negatively affect health and contribute to premature aging. Targeted eradication of these cells has been shown to improve the health of aged experimental animals, leading to a clinical interest in finding compounds that selectively eliminate senescent cells while sparing non-senescent ones. In our study, we identified a senolytic capacity of statins, which are lipid-lowering drugs prescribed to patients at high risk of cardiovascular events. Using two different models of senescence in human vascular endothelial cells (HUVECs), we found that statins preferentially eliminated senescent cells, while leaving non-senescent cells unharmed. We observed that the senolytic effect of statins could be negated with the co-administration of mevalonic acid and that statins induced cell detachment leading to anoikis-like apoptosis, as evidenced by real-time visualization of caspase-3/7 activation. Our findings suggest that statins possess a senolytic property, possibly also contributing to their described beneficial cardiovascular effects. Further studies are needed to explore the potential of short-term, high-dose statin treatment as a candidate senolytic therapy.
Department of Natural Drugs Faculty of Pharmacy Masaryk University 612 00 Brno Czech Republic
Department of Pathology Medical University of Vienna 1090 Vienna Austria
Department of Zoology Government College University Lahore Lahore 54000 Pakistan
Karl Landsteiner Institute for Cell Based Therapy in Gynecology 2100 Korneuburg Austria
See more in PubMed
Campisi J. Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 2013;75:685–705. doi: 10.1146/annurev-physiol-030212-183653. PubMed DOI PMC
Bloom S.I., Islam M.T., Lesniewski L.A., Donato A.J. Mechanisms and Consequences of Endothelial Cell Senescence. Nat. Rev. Cardiol. 2023;20:38–51. doi: 10.1038/s41569-022-00739-0. PubMed DOI PMC
Owens W.A., Walaszczyk A., Spyridopoulos I., Dookun E., Richardson G.D. Senescence and Senolytics in Cardiovascular Disease: Promise and Potential Pitfalls. Mech. Ageing Dev. 2021;198:111540. doi: 10.1016/j.mad.2021.111540. PubMed DOI PMC
Minamino T., Miyauchi H., Yoshida T., Ishida Y., Yoshida H., Komuro I. Endothelial Cell Senescence in Human Atherosclerosis. Circulation. 2002;105:1541–1544. doi: 10.1161/01.CIR.0000013836.85741.17. PubMed DOI
Erusalimsky J.D., Kurz D.J. Cellular Senescence in Vivo: Its Relevance in Ageing and Cardiovascular Disease. Exp. Gerontol. 2005;40:634–642. doi: 10.1016/j.exger.2005.04.010. PubMed DOI
Chiu J.-J., Chien S. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiol. Rev. 2011;91:327–387. doi: 10.1152/physrev.00047.2009. PubMed DOI PMC
Warboys C.M., De Luca A., Amini N., Luong L., Duckles H., Hsiao S., White A., Biswas S., Khamis R., Chong C.K., et al. Disturbed Flow Promotes Endothelial Senescence via a P53-Dependent Pathway. Arterioscler. Thromb. Vasc. Biol. 2014;34:985–995. doi: 10.1161/ATVBAHA.114.303415. PubMed DOI
Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M. Clearance of p16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders. Nature. 2011;479:232–236. doi: 10.1038/nature10600. PubMed DOI PMC
Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., Saltness R.A., Jeganathan K.B., Verzosa G.C., Pezeshki A., et al. Naturally Occurring P16(Ink4a)-Positive Cells Shorten Healthy Lifespan. Nature. 2016;530:184–189. doi: 10.1038/nature16932. PubMed DOI PMC
Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., et al. The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs. Aging Cell. 2015;14:644–658. doi: 10.1111/acel.12344. PubMed DOI PMC
Roos C.M., Zhang B., Palmer A.K., Ogrodnik M.B., Pirtskhalava T., Thalji N.M., Hagler M., Jurk D., Smith L.A., Casaclang-Verzosa G., et al. Chronic Senolytic Treatment Alleviates Established Vasomotor Dysfunction in Aged or Atherosclerotic Mice. Aging Cell. 2016;15:973–977. doi: 10.1111/acel.12458. PubMed DOI PMC
Xu M., Pirtskhalava T., Farr J.N., Weigand B.M., Palmer A.K., Weivoda M.M., Inman C.L., Ogrodnik M.B., Hachfeld C.M., Fraser D.G., et al. Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nat. Med. 2018;24:1246–1256. doi: 10.1038/s41591-018-0092-9. PubMed DOI PMC
Krouwer V.J.D., Hekking L.H.P., Langelaar-Makkinje M., Regan-Klapisz E., Post J.A. Endothelial Cell Senescence Is Associated with Disrupted Cell-Cell Junctions and Increased Monolayer Permeability. Vasc. Cell. 2012;4:12. doi: 10.1186/2045-824X-4-12. PubMed DOI PMC
Mun G.I., Boo Y.C. Identification of CD44 as a Senescence-Induced Cell Adhesion Gene Responsible for the Enhanced Monocyte Recruitment to Senescent Endothelial Cells. Am. J. Physiol. Heart Circ. Physiol. 2010;298:H2102–H2111. doi: 10.1152/ajpheart.00835.2009. PubMed DOI
El Assar M., Angulo J., Vallejo S., Peiró C., Sánchez-Ferrer C.F., Rodríguez-Mañas L. Mechanisms Involved in the Aging-Induced Vascular Dysfunction. Front. Physiol. 2012;3:132. doi: 10.3389/fphys.2012.00132. PubMed DOI PMC
Istvan E.S., Deisenhofer J. Structural Mechanism for Statin Inhibition of HMG-CoA Reductase. Science. 2001;292:1160–1164. doi: 10.1126/science.1059344. PubMed DOI
Baigent C., Keech A., Kearney P.M., Blackwell L., Buck G., Pollicino C., Kirby A., Sourjina T., Peto R., Collins R., et al. Efficacy and Safety of Cholesterol-Lowering Treatment: Prospective Meta-Analysis of Data from 90,056 Participants in 14 Randomised Trials of Statins. Lancet Lond. Engl. 2005;366:1267–1278. doi: 10.1016/S0140-6736(05)67394-1. PubMed DOI
Chello M., Mastroroberto P., Patti G., D’Ambrosio A., Morichetti M.C., Di Sciascio G., Covino E. Simvastatin Attenuates Leucocyte–Endothelial Interactions after Coronary Revascularisation with Cardiopulmonary Bypass. Heart. 2003;89:538–543. doi: 10.1136/heart.89.5.538. PubMed DOI PMC
Jain M.K., Ridker P.M. Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nat. Rev. Drug Discov. 2005;4:977–987. doi: 10.1038/nrd1901. PubMed DOI
Bates K., Ruggeroli C.E., Goldman S., Gaballa M.A. Simvastatin Restores Endothelial NO-Mediated Vasorelaxation in Large Arteries after Myocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2002;283:H768–H775. doi: 10.1152/ajpheart.00826.2001. PubMed DOI
Wang J., Xu Z., Kitajima I., Wang Z. Effects of Different Statins on Endothelial Nitric Oxide Synthase and AKT Phosphorylation in Endothelial Cells. Int. J. Cardiol. 2008;127:33–39. doi: 10.1016/j.ijcard.2007.10.034. PubMed DOI
Zhao W., Fu H., Chang F., Liu J., Wang J., Li F., Zhao J. Effects of Various Doses of Atorvastatin on Vascular Endothelial Cell Apoptosis and Autophagy In vitro. Mol. Med. Rep. 2019;19:1919–1925. doi: 10.3892/mmr.2019.9828. PubMed DOI
Crampton S.P., Davis J., Hughes C.C.W. Isolation of Human Umbilical Vein Endothelial Cells (HUVEC) J. Vis. Exp. 2007;3:e183. doi: 10.3791/183. PubMed DOI PMC
Dong W., Vuletic S., Albers J.J. Differential Effects of Simvastatin and Pravastatin on Expression of Alzheimer’s Disease-Related Genes in Human Astrocytes and Neuronal Cells. J. Lipid Res. 2009;50:2095–2102. doi: 10.1194/jlr.M900236-JLR200. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Signorell A., Aho K., Alfons A., Anderegg N., Aragon T., Arppe A., Baddeley A., Barton K., Bolker B., Borchers H.W., et al. DescTools: Tools for Descriptive Statistics. 2019. [(accessed on 6 June 2023)]. R Package Version 0.99.27; Available online: https://cran.r-project.org/package=DescTools.
Ritz C., Baty F., Streibig J.C., Gerhard D. Dose-Response Analysis Using R. PLoS ONE. 2015;10:e0146021. doi: 10.1371/journal.pone.0146021. PubMed DOI PMC
Xu S., Chen M., Feng T., Zhan L., Zhou L., Yu G. Use Ggbreak to Effectively Utilize Plotting Space to Deal with Large Datasets and Outliers. Front. Genet. 2021;12:2122. doi: 10.3389/fgene.2021.774846. PubMed DOI PMC
Bates D.M., Watts D.G. Nonlinear Regression Analysis and Its Applications. Wiley; New York, NY, USA: 1988.
Scholzen T., Gerdes J. The Ki-67 Protein: From the Known and the Unknown. J. Cell. Physiol. 2000;182:311–322. doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9. PubMed DOI
Kuo L.J., Yang L.-X. Gamma-H2AX—A Novel Biomarker for DNA Double-Strand Breaks. In Vivo Athens Greece. 2008;22:305–309. PubMed
Chen J., Huang X., Halicka D., Brodsky S., Avram A., Eskander J., Bloomgarden N.A., Darzynkiewicz Z., Goligorsky M.S. Contribution of p16INK4a and p21CIP1 Pathways to Induction of Premature Senescence of Human Endothelial Cells: Permissive Role of P53. Am. J. Physiol. Heart Circ. Physiol. 2006;290:H1575–H1586. doi: 10.1152/ajpheart.00364.2005. PubMed DOI
Hu L., Li H., Zi M., Li W., Liu J., Yang Y., Zhou D., Kong Q.-P., Zhang Y., He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front. Cell Dev. Biol. 2022;10:822816. doi: 10.3389/fcell.2022.822816. PubMed DOI PMC
Stehlik C., de Martin R., Kumabashiri I., Schmid J.A., Binder B.R., Lipp J. Nuclear Factor (NF)-kappaB-Regulated X-Chromosome-Linked Iap Gene Expression Protects Endothelial Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis. J. Exp. Med. 1998;188:211–216. doi: 10.1084/jem.188.1.211. PubMed DOI PMC
Chao D.T., Korsmeyer S.J. BCL-2 Family: Regulators of Cell Death. Annu. Rev. Immunol. 1998;16:395–419. doi: 10.1146/annurev.immunol.16.1.395. PubMed DOI
Wood M.A., Cavender J.F. Research Article: Beta-Galactosidase Staining as a Marker of Cells Enduring Stress. Bios. 2004;75:139–146. doi: 10.1893/0005-3155(2004)075<0139:BSAAMO>2.0.CO;2. DOI
Hernandez-Segura A., Nehme J., Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018;28:436–453. doi: 10.1016/j.tcb.2018.02.001. PubMed DOI
Wagner M., Hampel B., Bernhard D., Hala M., Zwerschke W., Jansen-Dürr P. Replicative Senescence of Human Endothelial Cells in Vitro Involves G1 Arrest, Polyploidization and Senescence-Associated Apoptosis. Exp. Gerontol. 2001;36:1327–1347. doi: 10.1016/S0531-5565(01)00105-X. PubMed DOI
Freund A., Laberge R.-M., Demaria M., Campisi J. Lamin B1 Loss Is a Senescence-Associated Biomarker. Mol. Biol. Cell. 2012;23:2066–2075. doi: 10.1091/mbc.e11-10-0884. PubMed DOI PMC
Shimi T., Butin-Israeli V., Adam S.A., Hamanaka R.B., Goldman A.E., Lucas C.A., Shumaker D.K., Kosak S.T., Chandel N.S., Goldman R.D. The Role of Nuclear Lamin B1 in Cell Proliferation and Senescence. Genes Dev. 2011;25:2579–2593. doi: 10.1101/gad.179515.111. PubMed DOI PMC
Schachter M. Chemical, Pharmacokinetic and Pharmacodynamic Properties of Statins: An Update. Fundam. Clin. Pharmacol. 2005;19:117–125. doi: 10.1111/j.1472-8206.2004.00299.x. PubMed DOI
McFarlane S.I., Muniyappa R., Francisco R., Sowers J.R. Clinical Review 145: Pleiotropic Effects of Statins: Lipid Reduction and Beyond. J. Clin. Endocrinol. Metab. 2002;87:1451–1458. doi: 10.1210/jcem.87.4.8412. PubMed DOI
Yamazaki M., Tokui T., Ishigami M., Sugiyama Y. Tissue-Selective Uptake of Pravastatin in Rats: Contribution of a Specific Carrier-Mediated Uptake System. Biopharm. Drug Dispos. 1996;17:775–789. doi: 10.1002/(SICI)1099-081X(199612)17:9<775::AID-BDD990>3.0.CO;2-S. PubMed DOI
Goldstein J.L., Brown M.S. Regulation of the Mevalonate Pathway. Nature. 1990;343:425–430. doi: 10.1038/343425a0. PubMed DOI
Baar M.P., Brandt R.M.C., Putavet D.A., Klein J.D.D., Derks K.W.J., Bourgeois B.R.M., Stryeck S., Rijksen Y., van Willigenburg H., Feijtel D.A., et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell. 2017;169:132–147.e16. doi: 10.1016/j.cell.2017.02.031. PubMed DOI PMC
Triana-Martínez F., Picallos-Rabina P., Da Silva-Álvarez S., Pietrocola F., Llanos S., Rodilla V., Soprano E., Pedrosa P., Ferreirós A., Barradas M., et al. Identification and Characterization of Cardiac Glycosides as Senolytic Compounds. Nat. Commun. 2019;10:4731. doi: 10.1038/s41467-019-12888-x. PubMed DOI PMC
Dimitroulakos J., Ye L.Y., Benzaquen M., Moore M.J., Kamel-Reid S., Freedman M.H., Yeger H., Penn L.Z. Differential Sensitivity of Various Pediatric Cancers and Squamous Cell Carcinomas to Lovastatin-Induced Apoptosis: Therapeutic Implications. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001;7:158–167. PubMed
Demierre M.-F., Higgins P.D.R., Gruber S.B., Hawk E., Lippman S.M. Statins and Cancer Prevention. Nat. Rev. Cancer. 2005;5:930–942. doi: 10.1038/nrc1751. PubMed DOI
Li X., Liu L., Tupper J.C., Bannerman D.D., Winn R.K., Sebti S.M., Hamilton A.D., Harlan J.M. Inhibition of Protein Geranylgeranylation and RhoA/RhoA Kinase Pathway Induces Apoptosis in Human Endothelial Cells. J. Biol. Chem. 2002;277:15309–15316. doi: 10.1074/jbc.M201253200. PubMed DOI
Kaneta S., Satoh K., Kano S., Kanda M., Ichihara K. All Hydrophobic HMG-CoA Reductase Inhibitors Induce Apoptotic Death in Rat Pulmonary Vein Endothelial Cells. Atherosclerosis. 2003;170:237–243. doi: 10.1016/S0021-9150(03)00301-0. PubMed DOI
Frisch S.M., Francis H. Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis. J. Cell Biol. 1994;124:619–626. doi: 10.1083/jcb.124.4.619. PubMed DOI PMC
Valentijn A.J., Zouq N., Gilmore A.P. Anoikis. Biochem. Soc. Trans. 2004;32:421–425. doi: 10.1042/bst0320421. PubMed DOI
Hickson L.J., Langhi Prata L.G.P., Bobart S.A., Evans T.K., Giorgadze N., Hashmi S.K., Herrmann S.M., Jensen M.D., Jia Q., Jordan K.L., et al. Senolytics Decrease Senescent Cells in Humans: Preliminary Report from a Clinical Trial of Dasatinib plus Quercetin in Individuals with Diabetic Kidney Disease. EBioMedicine. 2019;47:446–456. doi: 10.1016/j.ebiom.2019.08.069. PubMed DOI PMC
Tang D., Park H.-J., Georgescu S.P., Sebti S.M., Hamilton A.D., Galper J.B. Simvastatin Potentiates Tumor Necrosis Factor Alpha-Mediated Apoptosis of Human Vascular Endothelial Cells via the Inhibition of the Geranylgeranylation of RhoA. Life Sci. 2006;79:1484–1492. doi: 10.1016/j.lfs.2006.04.019. PubMed DOI
Diamant M., Tushuizen M.E., Abid-Hussein M.N., Hau C.M., Böing A.N., Sturk A., Nieuwland R. Simvastatin-Induced Endothelial Cell Detachment and Microparticle Release Are Prenylation Dependent. Thromb. Haemost. 2008;100:489–497. doi: 10.1160/TH07-12-0760. PubMed DOI
Copaja M., Venegas D., Aranguiz P., Canales J., Vivar R., Avalos Y., Garcia L., Chiong M., Olmedo I., Catalán M., et al. Simvastatin Disrupts Cytoskeleton and Decreases Cardiac Fibroblast Adhesion, Migration and Viability. Toxicology. 2012;294:42–49. doi: 10.1016/j.tox.2012.01.011. PubMed DOI
Taraseviciene-Stewart L., Scerbavicius R., Choe K.-H., Cool C., Wood K., Tuder R.M., Burns N., Kasper M., Voelkel N.F. Simvastatin Causes Endothelial Cell Apoptosis and Attenuates Severe Pulmonary Hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006;291:L668–L676. doi: 10.1152/ajplung.00491.2005. PubMed DOI
Lei J., Gu X., Ye Z., Shi J., Zheng X. Antiaging Effects of Simvastatin on Vascular Endothelial Cells. Clin. Appl. Thromb. Off. J. Int. Acad. Clin. Appl. Thromb. 2014;20:212–218. doi: 10.1177/1076029612458967. PubMed DOI
Miller R.A., Harrison D.E., Astle C.M., Baur J.A., Boyd A.R., de Cabo R., Fernandez E., Flurkey K., Javors M.A., Nelson J.F., et al. Rapamycin, but Not Resveratrol or Simvastatin, Extends Life Span of Genetically Heterogeneous Mice. J. Gerontol. A. Biol. Sci. Med. Sci. 2011;66:191–201. doi: 10.1093/gerona/glq178. PubMed DOI PMC
Corsini A., Bellosta S., Baetta R., Fumagalli R., Paoletti R., Bernini F. New Insights into the Pharmacodynamic and Pharmacokinetic Properties of Statins. Pharmacol. Ther. 1999;84:413–428. doi: 10.1016/S0163-7258(99)00045-5. PubMed DOI
Stone N.J., Robinson J.G., Lichtenstein A.H., Bairey Merz C.N., Blum C.B., Eckel R.H., Goldberg A.C., Gordon D., Levy D., Lloyd-Jones D.M., et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014;63:2889–2934. doi: 10.1016/j.jacc.2013.11.002. PubMed DOI
Thibault A., Samid D., Tompkins A.C., Figg W.D., Cooper M.R., Hohl R.J., Trepel J., Liang B., Patronas N., Venzon D.J., et al. Phase I Study of Lovastatin, an Inhibitor of the Mevalonate Pathway, in Patients with Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1996;2:483–491. PubMed
van der Spek E., Bloem A.C., van de Donk N.W.C.J., Bogers L.H., van der Griend R., Kramer M.H., de Weerdt O., Wittebol S., Lokhorst H.M. Dose-Finding Study of High-Dose Simvastatin Combined with Standard Chemotherapy in Patients with Relapsed or Refractory Myeloma or Lymphoma. Haematologica. 2006;91:542–545. PubMed
von Kobbe C. Targeting Senescent Cells: Approaches, Opportunities, Challenges. Aging. 2019;11:12844–12861. doi: 10.18632/aging.102557. PubMed DOI PMC
Grosse L., Wagner N., Emelyanov A., Molina C., Lacas-Gervais S., Wagner K.-D., Bulavin D.V. Defined p16High Senescent Cell Types Are Indispensable for Mouse Healthspan. Cell Metab. 2020;32:87–99.e6. doi: 10.1016/j.cmet.2020.05.002. PubMed DOI
Furberg C.D. Natural Statins and Stroke Risk. Circulation. 1999;99:185–188. doi: 10.1161/01.CIR.99.2.185. PubMed DOI
Singh D.K., Li L., Porter T.D. Policosanol Inhibits Cholesterol Synthesis in Hepatoma Cells by Activation of AMP-Kinase. J. Pharmacol. Exp. Ther. 2006;318:1020–1026. doi: 10.1124/jpet.106.107144. PubMed DOI
Nam D.-E., Yun J.-M., Kim D., Kim O.-K. Policosanol Attenuates Cholesterol Synthesis via AMPK Activation in Hypercholesterolemic Rats. J. Med. Food. 2019;22:1110–1117. doi: 10.1089/jmf.2019.4491. PubMed DOI
Francini-Pesenti F., Beltramolli D., Dall’Acqua S., Brocadello F. Effect of Sugar Cane Policosanol on Lipid Profile in Primary Hypercholesterolemia. Phytother. Res. 2008;22:318–322. doi: 10.1002/ptr.2315. PubMed DOI
Deng R. Therapeutic Effects of Guggul and Its Constituent Guggulsterone: Cardiovascular Benefits. Cardiovasc. Drug Rev. 2007;25:375–390. doi: 10.1111/j.1527-3466.2007.00023.x. PubMed DOI
Ramachandran C., Nair S.M., Quirrin K.-W., Melnick S.J. Hypolipidemic Effects of a Proprietary Commiphora Mukul Gum Resin Extract and Medium-Chain Triglyceride Preparation (GU-MCT810) J. Evid.-Based Complement. Altern. Med. 2013;18:248–256. doi: 10.1177/2156587213488601. DOI