Bacillus amyloliquefaciens B10 Alleviates the Immunosuppressive Effects of Deoxynivalenol and Porcine Circovirus Type 2 Infection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38251231
PubMed Central
PMC10819842
DOI
10.3390/toxins16010014
PII: toxins16010014
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus amyloliquefaciens B10, autophagy, cGAS–STING, deoxynivalenol, porcine circovirus type 2,
- MeSH
- antivirové látky MeSH
- Bacillus amyloliquefaciens * MeSH
- Circovirus * MeSH
- interferon typ I * MeSH
- mykotoxiny * MeSH
- nukleotidyltransferasy MeSH
- prasata MeSH
- trichotheceny * MeSH
- zemědělské plodiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- deoxynivalenol MeSH Prohlížeč
- interferon typ I * MeSH
- mykotoxiny * MeSH
- nukleotidyltransferasy MeSH
- trichotheceny * MeSH
As one of the most common mycotoxins, deoxynivalenol (DON) can contaminate a wide range of crops and foods. Porcine circovirus 2 (PCV2) is a kind of immunosuppressive virus, which can cause porcine circovirus associated disease (PCVD) in pig farms infected with PCV2. Pigs are extremely sensitive to DON, and PCV2-infected pig farms are often contaminated with DON. Our previous studies indicated that Bacillus amyloliquefaciens B10 (B10) has the potential to alleviate the toxicity of mycotoxins. The research was aimed at investigating the effects of Bacillus amyloliquefaciens B10 on the immunosuppressive effects caused by both DON and PCV2 infection. The results indicated that the expression of the PCV2 capsid protein CAP was significantly decreased after pretreatment with Bacillus amyloliquefaciens B10. Then, the effects of the Bacillus amyloliquefaciens B10 pretreatment on the type I interferon, antiviral protein and the antiviral signal pathway cGAS-STING was further investigated. The findings displayed that the expression of the type I interferon and antiviral protein were increased, while the IL-10 were decreased after pretreatment with Bacillus amyloliquefaciens B10. The inhibition of DON on the cGAS-STING signal pathway was relieved. Furthermore, it was found that this intervention effect was produced by inhibiting autophagy. In summary, Bacillus amyloliquefaciens B10 can mitigate the immunosuppressive effects of PCV2 and DON by inhibiting the production of autophagy.
Zobrazit více v PubMed
Sun Y., Jiang J., Mu P., Lin R., Wen J., Deng Y. Toxicokinetics and Metabolism of Deoxynivalenol in Animals and Humans. Arch. Toxicol. 2022;96:2639–2654. doi: 10.1007/s00204-022-03337-8. PubMed DOI
You L., Zhao Y., Kuca K., Wang X., Oleksak P., Chrienova Z., Nepovimova E., Jaćević V., Wu Q., Wu W. Hypoxia, Oxidative Stress, and Immune Evasion: A Trinity of the Trichothecenes T-2 Toxin and Deoxynivalenol (DON) Arch. Toxicol. 2021;95:1899–1915. doi: 10.1007/s00204-021-03030-2. PubMed DOI
Lei R., Jiang N., Zhang Q., Hu S., Dennis B.S., He S., Guo X. Prevalence of Selenium, T-2 Toxin, and Deoxynivalenol in Kashin-Beck Disease Areas in Qinghai Province, Northwest China. Biol. Trace Elem. Res. 2016;171:34–40. doi: 10.1007/s12011-015-0495-0. PubMed DOI
Zhai S.-L., Lu S.-S., Wei W.-K., Lv D.-H., Wen X.-H., Zhai Q., Chen Q.-L., Sun Y.-W., Xi Y. Reservoirs of Porcine Circoviruses: A Mini Review. Front. Vet. Sci. 2019;6:319. doi: 10.3389/fvets.2019.00319. PubMed DOI PMC
Opriessnig T., Meng X.-J., Halbur P.G. Porcine Circovirus Type 2 Associated Disease: Update on Current Terminology, Clinical Manifestations, Pathogenesis, Diagnosis, and Intervention Strategies. J. Vet. Diagn. Investig. 2007;19:591–615. doi: 10.1177/104063870701900601. PubMed DOI
Sanchez R.E., Meerts P., Nauwynck H.J., Ellis J.A., Pensaert M.B. Characteristics of Porcine Circovirus-2 Replication in Lymphoid Organs of Pigs Inoculated in Late Gestation or Postnatally and Possible Relation to Clinical and Pathological Outcome of Infection. J. Vet. Diagn. Investig. 2004;16:175–185. doi: 10.1177/104063870401600301. PubMed DOI
Sewalt V., Shanahan D., Gregg L., La Marta J., Carrillo R. The Generally Recognized as Safe (GRAS) Process for Industrial Microbial Enzymes. Ind. Biotechnol. 2016;12:295–302. doi: 10.1089/ind.2016.0011. DOI
Abriouel H., Franz C.M.A.P., Ben Omar N., Gálvez A. Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiol. Rev. 2011;35:201–232. doi: 10.1111/j.1574-6976.2010.00244.x. PubMed DOI
WoldemariamYohannes K., Wan Z., Yu Q., Li H., Wei X., Liu Y., Wang J., Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. J. Agric. Food Chem. 2020;68:14709–14727. doi: 10.1021/acs.jafc.0c06396. PubMed DOI
Chen Y.-C., Huang S.-D., Tu J.-H., Yu J.-S., Nurlatifah A.O., Chiu W.-C., Su Y.-H., Chang H.-L., Putri D.A., Cheng H.-L. Exopolysaccharides of Modulate Glycemic Level in Mice and Promote Glucose Uptake of Cells through the Activation of Akt. Int. J. Biol. Macromol. 2020;146:202–211. doi: 10.1016/j.ijbiomac.2019.12.217. PubMed DOI
Chang X., Wu Z., Wu S., Dai Y., Sun C. Degradation of Ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015;32:564–571. doi: 10.1080/19440049.2014.991948. PubMed DOI
Siahmoshteh F., Siciliano I., Banani H., Hamidi-Esfahani Z., Razzaghi-Abyaneh M., Gullino M.L., Spadaro D. Efficacy of Bacillus Subtilis and Bacillus amyloliquefaciens in the Control of Aspergillus Parasiticus Growth and Aflatoxins Production on Pistachio. Int. J. Food Microbiol. 2017;254:47–53. doi: 10.1016/j.ijfoodmicro.2017.05.011. PubMed DOI
Xu J., Wang H., Zhu Z., Ji F., Yin X., Hong Q., Shi J. Isolation and Characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the Degradation of Zearalenone by Bacillus spp. Food Control. 2016;68:244–250. doi: 10.1016/j.foodcont.2016.03.030. DOI
Zhao Y., Wang T., Li P., Chen J., Nepovimova E., Long M., Wu W., Kuca K. Bacillus amyloliquefaciens B10 Can Alleviate Aflatoxin B1-Induced Kidney Oxidative Stress and Apoptosis in Mice. Ecotoxicol. Environ. Saf. 2021;218:112286. doi: 10.1016/j.ecoenv.2021.112286. PubMed DOI
Li X., Lv Z., Chen J., Nepovimova E., Long M., Wu W., Kuca K. Bacillus amyloliquefaciens B10 Can Alleviate Liver Apoptosis and Oxidative Stress Induced by Aflatoxin B1. Food Chem. Toxicol. 2021;151:112124. doi: 10.1016/j.fct.2021.112124. PubMed DOI
Chen J., Lv Z., Cheng Z., Wang T., Li P., Wu A., Nepovimova E., Long M., Wu W., Kuca K. Bacillus amyloliquefaciens B10 Inhibits Aflatoxin B1-Induced Cecal Inflammation in Mice by Regulating Their Intestinal Flora. Food Chem. Toxicol. 2021;156:112438. doi: 10.1016/j.fct.2021.112438. PubMed DOI
Wu J., Sun L., Chen X., Du F., Shi H., Chen C., Chen Z.J. Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science. 2013;339:826–830. doi: 10.1126/science.1229963. PubMed DOI PMC
Decout A., Katz J.D., Venkatraman S., Ablasser A. The cGAS-STING Pathway as a Therapeutic Target in Inflammatory Diseases. Nat. Rev. Immunol. 2021;21:548–569. doi: 10.1038/s41577-021-00524-z. PubMed DOI PMC
Paul P., Münz C. Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond. Adv. Virus Res. 2016;95:149–195. doi: 10.1016/bs.aivir.2016.02.002. PubMed DOI
Nassour J., Radford R., Correia A., Fusté J.M., Schoell B., Jauch A., Shaw R.J., Karlseder J. Autophagic Cell Death Restricts Chromosomal Instability during Replicative Crisis. Nature. 2019;565:659–663. doi: 10.1038/s41586-019-0885-0. PubMed DOI PMC
Liu Z., Wang M., Wang X., Bu Q., Wang Q., Su W., Li L., Zhou H., Lu L. XBP1 Deficiency Promotes Hepatocyte Pyroptosis by Impairing Mitophagy to Activate mtDNA-cGAS-STING Signaling in Macrophages during Acute Liver Injury. Redox Biol. 2022;52:102305. doi: 10.1016/j.redox.2022.102305. PubMed DOI PMC
Grau-Roma L., Stockmarr A., Kristensen C.S., Enøe C., López-Soria S., Nofrarías M., Bille-Hansen V., Hjulsager C.K., Sibila M., Jorsal S.E., et al. Infectious Risk Factors for Individual Postweaning Multisystemic Wasting Syndrome (PMWS) Development in Pigs from Affected Farms in Spain and Denmark. Res. Vet. Sci. 2012;93:1231–1240. doi: 10.1016/j.rvsc.2012.07.001. PubMed DOI
Milićević D., Nastasijevic I., Petrovic Z. Mycotoxin in the Food Supply Chain-Implications for Public Health Program. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016;34:293–319. doi: 10.1080/10590501.2016.1236607. PubMed DOI
Savard C., Provost C., Alvarez F., Pinilla V., Music N., Jacques M., Gagnon C.A., Chorfi Y. Effect of Deoxynivalenol (DON) Mycotoxin on in Vivo and in Vitro Porcine Circovirus Type 2 Infections. Vet. Microbiol. 2015;176:257–267. doi: 10.1016/j.vetmic.2015.02.004. PubMed DOI
Savard C., Pinilla V., Provost C., Gagnon C.A., Chorfi Y. In Vivo Effect of Deoxynivalenol (DON) Naturally Contaminated Feed on Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection. Vet. Microbiol. 2014;174:419–426. doi: 10.1016/j.vetmic.2014.10.019. PubMed DOI
Liu J.-T., Lumsden J.S. Impact of Feed Restriction, Chloroquine and Deoxynivalenol on Viral Haemorrhagic Septicaemia Virus IVb in Fathead Minnow Pimephales Promelas Rafinesque. J. Fish Dis. 2021;44:217–220. doi: 10.1111/jfd.13300. PubMed DOI
Poelaert K.C.K., Van Cleemput J., Laval K., Favoreel H.W., Couck L., Van den Broeck W., Azab W., Nauwynck H.J. Equine Herpesvirus 1 Bridles T Lymphocytes To Reach Its Target Organs. J. Virol. 2019;93:e02098-18. doi: 10.1128/JVI.02098-18. PubMed DOI PMC
Li M., Harkema J.R., Cuff C.F., Pestka J.J. Deoxynivalenol Exacerbates Viral Bronchopneumonia Induced by Respiratory Reovirus Infection. Toxicol. Sci. 2007;95:412–426. doi: 10.1093/toxsci/kfl153. PubMed DOI
Liu D., Ge L., Wang Q., Su J., Chen X., Wang C., Huang K. Low-Level Contamination of Deoxynivalenol: A Threat from Environmental Toxins to Porcine Epidemic Diarrhea Virus Infection. Environ. Int. 2020;143:105949. doi: 10.1016/j.envint.2020.105949. PubMed DOI PMC
Li X., Wang Q., Hu X., Liu W. Current Status of Probiotics as Supplements in the Prevention and Treatment of Infectious Diseases. Front. Cell. Infect. Microbiol. 2022;12:789063. doi: 10.3389/fcimb.2022.789063. PubMed DOI PMC
Rastelli M., Cani P.D., Knauf C. The Gut Microbiome Influences Host Endocrine Functions. Endocr. Rev. 2019;40:1271–1284. doi: 10.1210/er.2018-00280. PubMed DOI
Zeng Z., Zhou Y., Xu Y., Wang S., Wang B., Zeng Z., Wang Q., Ye X., Jin L., Yue M., et al. Bacillus amyloliquefaciens SC06 Alleviates the Obesity of Ob/Ob Mice and Improves Their Intestinal Microbiota and Bile Acid Metabolism. Food Funct. 2022;13:5381–5395. doi: 10.1039/D1FO03170H. PubMed DOI
Jebali R., Ben Salah-Abbès J., Abbès S., Hassan A.M., Abdel-Aziem S.H., El-Nekeety A.A., Oueslati R., Abdel-Wahhab M.A. Lactobacillus Plantarum Alleviate Aflatoxins (B1 and M1) Induced Disturbances in the Intestinal Genes Expression and DNA Fragmentation in Mice. Toxicon. 2018;146:13–23. doi: 10.1016/j.toxicon.2018.03.008. PubMed DOI
Falcinelli S., Rodiles A., Hatef A., Picchietti S., Cossignani L., Merrifield D.L., Unniappan S., Carnevali O. Influence of Probiotics Administration on Gut Microbiota Core: A Review on the Effects on Appetite Control, Glucose, and Lipid Metabolism. J. Clin. Gastroenterol. 2018;52((Suppl. S1)):S50–S56. doi: 10.1097/MCG.0000000000001064. PubMed DOI
Dimidi E., Christodoulides S., Scott S.M., Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv. Nutr. 2017;8:484–494. doi: 10.3945/an.116.014407. PubMed DOI PMC
Lee A.J., Ashkar A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018;9:2061. doi: 10.3389/fimmu.2018.02061. PubMed DOI PMC
Jiao R., Cai Y., He P., Munir S., Li X., Wu Y., Wang J., Xia M., He P., Wang G., et al. Bacillus amyloliquefaciens YN201732 Produces Lipopeptides With Promising Biocontrol Activity Against Fungal Pathogen Erysiphe Cichoracearum. Front. Cell. Infect. Microbiol. 2021;11:598999. doi: 10.3389/fcimb.2021.598999. PubMed DOI PMC
Ma Z., Jacobs S.R., West J.A., Stopford C., Zhang Z., Davis Z., Barber G.N., Glaunsinger B.A., Dittmer D.P., Damania B. Modulation of the cGAS-STING DNA Sensing Pathway by Gammaherpesviruses. Proc. Natl. Acad. Sci. USA. 2015;112:E4306–E4315. doi: 10.1073/pnas.1503831112. PubMed DOI PMC
Lio C.-W.J., McDonald B., Takahashi M., Dhanwani R., Sharma N., Huang J., Pham E., Benedict C.A., Sharma S. cGAS-STING Signaling Regulates Initial Innate Control of Cytomegalovirus Infection. J. Virol. 2016;90:7789–7797. doi: 10.1128/JVI.01040-16. PubMed DOI PMC
Wu J., Li W., Shao Y., Avey D., Fu B., Gillen J., Hand T., Ma S., Liu X., Miley W., et al. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein. Cell Host Microbe. 2015;18:333–344. doi: 10.1016/j.chom.2015.07.015. PubMed DOI PMC
Gan F., Zhou Y., Qian G., Huang D., Hou L., Liu D., Chen X., Wang T., Jiang P., Lei X., et al. PCV2 Infection Aggravates Ochratoxin A-Induced Nephrotoxicity via Autophagy Involving P38 Signaling Pathway in Vivo and in Vitro. Environ. Pollut. 2018;238:656–662. doi: 10.1016/j.envpol.2018.03.032. PubMed DOI
Liu D., Lin J., Su J., Chen X., Jiang P., Huang K. Glutamine Deficiency Promotes PCV2 Infection through Induction of Autophagy via Activation of ROS-Mediated JAK2/STAT3 Signaling Pathway. J. Agric. Food Chem. 2018;66:11757–11766. doi: 10.1021/acs.jafc.8b04704. PubMed DOI
Liu D., Xu J., Qian G., Hamid M., Gan F., Chen X., Huang K. Selenizing Astragalus Polysaccharide Attenuates PCV2 Replication Promotion Caused by Oxidative Stress through Autophagy Inhibition via PI3K/AKT Activation. Int. J. Biol. Macromol. 2018;108:350–359. doi: 10.1016/j.ijbiomac.2017.12.010. PubMed DOI
Bao C.L., Liu S.Z., Shang Z.D., Liu Y.J., Wang J., Zhang W.X., Dong B., Cao Y.H. Bacillus amyloliquefaciens TL106 Protects Mice against Enterohaemorrhagic Escherichia Coli O157:H7-Induced Intestinal Disease through Improving Immune Response, Intestinal Barrier Function and Gut Microbiota. J. Appl. Microbiol. 2021;131:470–484. doi: 10.1111/jam.14952. PubMed DOI