• This record comes from PubMed

Chelation of Mitochondrial Iron as an Antiparasitic Strategy

. 2024 Feb 09 ; 10 (2) : 676-687. [epub] 20240130

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural

Grant support
U10 CA021115 NCI NIH HHS - United States

Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.

See more in PubMed

Murphy M. P. Selective Targeting of Bioactive Compounds to Mitochondria. Trends Biotechnol. 1997, 15 (8), 326–330. 10.1016/S0167-7799(97)01068-8. PubMed DOI

Murphy M. P. Targeting Lipophilic Cations to Mitochondria. Biochim. Biophys. Acta, Bioenerg. 2008, 1777 (7–8), 1028–1031. 10.1016/j.bbabio.2008.03.029. PubMed DOI

Ma C.; Xia F.; Kelley S. O. Mitochondrial Targeting of Probes and Therapeutics to the Powerhouse of the Cell. Bioconjugate Chem. 2020, 31 (12), 2650–2667. 10.1021/acs.bioconjchem.0c00470. PubMed DOI

Stemberkova-Hubackova S.; Zobalova R.; Dubisova M.; Smigova J.; Dvorakova S.; Korinkova K.; Ezrova Z.; Endaya B.; Blazkova K.; Vlcak E.; Brisudova P.; Le D. T.; Juhas S.; Rosel D.; Kelemen C. D.; Sovilj D.; Vacurova E.; Cajka T.; Filimonenko V.; Dong L.; Andera L.; Hozak P.; Brabek J.; Bielcikova Z.; Stursa J.; Werner L.; Neuzil J. Simultaneous Targeting of Mitochondrial Metabolism and Immune Checkpoints as a New Strategy for Renal Cancer Therapy. Clin. Transl. Med. 2022, 12 (3), e64510.1002/CTM2.645. PubMed DOI PMC

Modica-Napolitano J. S.; Aprille J. R. Delocalized Lipophilic Cations Selectively Target the Mitochondria of Carcinoma Cells. Adv. Drug Delivery Rev. 2001, 49 (1–2), 63–70. 10.1016/S0169-409X(01)00125-9. PubMed DOI

Bielcikova Z.; Stursa J.; Krizova L.; Dong L.; Spacek J.; Hlousek S.; Vocka M.; Rohlenova K.; Bartosova O.; Cerny V.; Padrta T.; Pesta M.; Michalek P.; Hubackova S. S.; Kolostova K.; Pospisilova E.; Bobek V.; Klezl P.; Zobalova R.; Endaya B.; Rohlena J.; Petruzelka L.; Werner L.; Neuzil J. Mitochondrially Targeted Tamoxifen in Patients with Metastatic Solid Tumours: An Open-Label, Phase I/Ib Single-Centre Trial. EClinicalMedicine 2023, 57, 101873.10.1016/j.eclinm.2023.101873. PubMed DOI PMC

Rohlenova K.; Sachaphibulkij K.; Stursa J.; Bezawork-Geleta A.; Blecha J.; Endaya B.; Werner L.; Cerny J.; Zobalova R.; Goodwin J.; Spacek T.; Alizadeh Pesdar E.; Yan B.; Nguyen M. N.; Vondrusova M.; Sobol M.; Jezek P.; Hozak P.; Truksa J.; Rohlena J.; Dong L. F.; Neuzil J. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid. Redox Signaling 2017, 26 (2), 84–103. 10.1089/ars.2016.6677. PubMed DOI PMC

Arbon D.; Ženíšková K.; Šubrtová K.; Mach J.; Štursa J.; Machado M.; Zahedifard F.; Leštinová T.; Hierro-Yap C.; Neuzil J.; Volf P.; Ganter M.; Zoltner M.; Zíková A.; Werner L.; Sutak R. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob. Agents Chemother. 2022, 66 (8), e007272210.1128/aac.00727-22. PubMed DOI PMC

Manzano J. I.; Cueto-Díaz E. J.; Olías-Molero A. I.; Perea A.; Herraiz T.; Torrado J. J.; Alunda J. M.; Gamarro F.; Dardonville C. Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis. J. Med. Chem. 2019, 62 (23), 10664–10675. 10.1021/acs.jmedchem.9b00998. PubMed DOI

Cortes L. A.; Castro L.; Pesce B.; Maya J. D.; Ferreira J.; Castro-Castillo V.; Parra E.; Jara J. A.; López-Muñoz R. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity. PLoS One 2015, 10 (8), e013685210.1371/journal.pone.0136852. PubMed DOI PMC

Alkhaldi A. A. M.; Martinek J.; Panicucci B.; Dardonville C.; Zíková A.; de Koning H. P. Trypanocidal Action of Bisphosphonium Salts through a Mitochondrial Target in Bloodstream Form Trypanosoma Brucei. Int. J. Parasitol.: Drugs Drug Resist. 2016, 6 (1), 23–34. 10.1016/j.ijpddr.2015.12.002. PubMed DOI PMC

Taladriz A.; Healy A.; Flores Pérez E. J.; Herrero García V.; Ríos Martínez C.; Alkhaldi A. A. M.; Eze A. A.; Kaiser M.; de Koning H. P.; Chana A.; Dardonville C. Synthesis and Structure-Activity Analysis of New Phosphonium Salts with Potent Activity against African Trypanosomes. J. Med. Chem. 2012, 55 (6), 2606–2622. 10.1021/jm2014259. PubMed DOI

Mach J.; Sutak R. Iron in Parasitic Protists - from Uptake to Storage and Where We Can Interfere. Metallomics 2020, 12 (9), 1335–1347. 10.1039/d0mt00125b. PubMed DOI

Ibrahim O.; O’Sullivan J. Iron Chelators in Cancer Therapy. BioMetals 2020, 33 (4–5), 201–215. 10.1007/s10534-020-00243-3. PubMed DOI

Arbon D.; Ženíšková K.; Mach J.; Grechnikova M.; Malych R.; Talacko P.; Sutak R. Adaptive Iron Utilization Compensates for the Lack of an Inducible Uptake System in Naegleria Fowleri and Represents a Potential Target for Therapeutic Intervention. PLoS Neglected Trop. Dis. 2020, 14 (6), e000775910.1371/JOURNAL.PNTD.0007759. PubMed DOI PMC

Soteriadou K.; Papavassiliou P.; Voyiatzaki C.; Boelaert J. Effect of Iron Chelation on the In-Vitro Growth of Leishmania Promastigotes. J. Antimicrob. Chemother. 1995, 35 (1), 23–29. 10.1093/jac/35.1.23. PubMed DOI

Merschjohann K.; Steverding D. In vitro growth inhibition of bloodstream forms of Trypanosoma brucei and Trypanosoma congolenseby iron chelators. Kinetoplastid Biol. Dis. 2006, 5, 3.10.1186/1475-9292-5-3. PubMed DOI PMC

Yawalkar S. J. Milestones in the Research and Development of Desferrioxamine. Nephrol., Dial., Transplant. 1993, 8 (supp1), 40–42. 10.1093/ndt/8.supp1.40. PubMed DOI

Deferoxamine: Uses, Interactions, Mechanism of Action, DrugBank. https://go.drugbank.com/drugs/DB00746 (accessed Nov 9, 2022).

Dayani P. N.; Bishop M. C.; Black K.; Zeltzer P. M. Desferoxamine (DFO) – Mediated Iron Chelation: Rationale for a Novel Approach to Therapy for Brain Cancer. J. Neuro-Oncol. 2004, 67 (3), 367–377. 10.1023/B:NEON.0000024238.21349.37. PubMed DOI

Komoto K.; Nomoto T.; el Muttaqien S.; Takemoto H.; Matsui M.; Miura Y.; Nishiyama N. Iron Chelation Cancer Therapy Using Hydrophilic Block Copolymers Conjugated with Deferoxamine. Cancer Sci. 2021, 112 (1), 410–421. 10.1111/cas.14607. PubMed DOI PMC

Bajbouj K.; Shafarin J.; Hamad M. High-Dose Deferoxamine Treatment Disrupts Intracellular Iron Homeostasis, Reduces Growth, and Induces Apoptosis in Metastatic and Nonmetastatic Breast Cancer Cell Lines. Technol. Cancer Res. Treat. 2018, 17, 153303381876447.10.1177/1533033818764470. PubMed DOI PMC

Raventos-Suarez C.; Pollack S.; Nagel R. L. Plasmodium Falciparum: Inhibition of in Vitro Growth by Desferrioxamine. Am. J. Trop. Med. Hyg. 1982, 31 (5), 919–922. 10.4269/ajtmh.1982.31.919. PubMed DOI

Arantes J. M.; Lú Cia Pedrosa M.; Rodrigues Martins H.; Veloso M.; de Lana M.; Terezinha Bahia M.; Luiz Tafuri W.; Martins Carneiro C. Trypanosoma Cruzi: Treatment with the Iron Chelator Desferrioxamine Reduces Parasitemia and Mortality in Experimentally Infected Mice. Exp. Parasitol. 2007, 117 (1), 43–50. 10.1016/j.exppara.2007.03.006. PubMed DOI

Sandoval-Acuña C.; Torrealba N.; Tomkova V.; Jadhav S. B.; Blazkova K.; Merta L.; Lettlova S.; Adamcova M. K.; Rosel D.; Brabek J.; Neuzil J.; Stursa J.; Werner L.; Truksa J. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res. 2021, 81 (9), 2289–2303. 10.1158/0008-5472.CAN-20-1628. PubMed DOI

Nolan D. P.; Voorheis H. P. The Mitochondrion in Bloodstream Forms of Trypanosoma Brucei Is Energized by the Electrogenic Pumping of Protons Catalysed by the F1F0-ATPase. Eur. J. Biochem. 1992, 209 (1), 207–216. 10.1111/j.1432-1033.1992.tb17278.x. PubMed DOI

Glaser T. A.; Utz G. L.; Mukkada A. J. The Plasma Membrane Electrical Gradient (Membrane Potential) in Leishmania Donovani Promastigotes and Amastigotes. Mol. Biochem. Parasitol. 1992, 51 (1), 9–15. 10.1016/0166-6851(92)90195-P. PubMed DOI

Chen H.; Zhou X.; Ren B.; Cheng L. The Regulation of Hyphae Growth in Candida Albicans. Virulence 2020, 11 (1), 337–348. 10.1080/21505594.2020.1748930. PubMed DOI PMC

Garcia-Rubio R.; de Oliveira H. C.; Rivera J.; Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993.10.3389/fmicb.2019.02993. PubMed DOI PMC

Casadevall A.; Coelho C.; Cordero R. J. B.; Dragotakes Q.; Jung E.; Vij R.; Wear M. P. The Capsule of Cryptococcus Neoformans. Virulence 2019, 10 (1), 822–831. 10.1080/21505594.2018.1431087. PubMed DOI PMC

Robertson E. J.; Najjuka G.; Rolfes M. A.; Akampurira A.; Jain N.; Anantharanjit J.; von Hohenberg M.; Tassieri M.; Carlsson A.; Meya D. B.; Harrison T. S.; Fries B. C.; Boulware D. R.; Bicanic T. Cryptococcus Neoformans Ex Vivo Capsule Size Is Associated with Intracranial Pressure and Host Immune Response in HIV-Associated Cryptococcal Meningitis. J. Infect. Dis. 2014, 209 (1), 74–82. 10.1093/infdis/jit435. PubMed DOI PMC

García-Rodas R.; Cordero R. J. B.; Trevijano-Contador N.; Janbon G.; Moyrand F.; Casadevall A.; Zaragoza O. Capsule Growth in Cryptococcus Neoformans Is Coordinated with Cell Cycle Progression. mBio 2014, 5 (3), e00945-1410.1128/mbio.00945-14. PubMed DOI PMC

Guess T.; Lai H.; Smith S. E.; Sircy L.; Cunningham K.; Nelson D. E.; McClelland E. E. Size Matters: Measurement of Capsule Diameter in Cryptococcus Neoformans. J. Vis. Exp. 2018, 132, 57171.10.3791/57171. PubMed DOI PMC

Lloyd J. B.; Cable H.; Rice-Evans C. Evidence That Desferrioxamine Cannot Enter Cells by Passive Diffusion. Biochem. Pharmacol. 1991, 41 (9), 1361–1363. 10.1016/0006-2952(91)90109-I. PubMed DOI

Tomás A. M.; Castro H. Redox Metabolism in Mitochondria of Trypanosomatids. Antioxid. Redox Signaling 2013, 19 (7), 696–707. 10.1089/ars.2012.4948. PubMed DOI PMC

Whitney L. C.; Bicanic T. Treatment Principles for Candida and Cryptococcus. Cold Spring Harbor Perspect. Med. 2015, 5 (6), a024158.10.1101/cshperspect.a024158. PubMed DOI PMC

Bassetti M.; Vena A.; Bouza E.; Peghin M.; Muñoz P.; Righi E.; Pea F.; Lackner M.; Lass-Flörl C. Antifungal Susceptibility Testing in Candida, Aspergillus and Cryptococcus Infections: Are the MICs Useful for Clinicians?. Clin. Microbiol. Infect. 2020, 26 (8), 1024–1033. 10.1016/j.cmi.2020.02.017. PubMed DOI

May R. C.; Stone N. R. H.; Wiesner D. L.; Bicanic T.; Nielsen K. Cryptococcus: From Environmental Saprophyte to Global Pathogen. Nat. Rev. Microbiol. 2016, 14 (2), 106–117. 10.1038/nrmicro.2015.6. PubMed DOI PMC

Vartivarian S. E.; Anaissie E. J.; Cowart R. E.; Sprigg H. A.; Tingler M. J.; Jacobson E. S. Regulation of Cryptococcal Capsular Polysaccharide by Iron. J. Infect. Dis. 1993, 167 (1), 186–190. 10.1093/infdis/167.1.186. PubMed DOI

Matsuu A.; Yamasaki M.; Xuan X.; Ikadai H.; Hikasa Y. In vitro evaluation of the growth inhibitory activities of 15 drugs against Babesia gibsoni (Aomori strain). Vet. Parasitol. 2008, 157 (1–2), 1–8. 10.1016/j.vetpar.2008.07.023. PubMed DOI

NCCLS , Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Second Edition, Document M27-A2; NCCLS, 2002: Vol 22, p 15.

Malandrin L.; L’Hostis M.; Chauvin A. Isolation of Babesia Divergens from Carrier Cattle Blood Using in Vitro Culture. Vet. Res. 2004, 35 (1), 131–139. 10.1051/vetres:2003047. PubMed DOI

Johnson J. D.; Dennull R. A.; Gerena L.; Lopez-Sanchez M.; Roncal N. E.; Waters N. C. Assessment and Continued Validation of the Malaria SYBR Green I-Based Fluorescence Assay for Use in Malaria Drug Screening. Antimicrob. Agents Chemother. 2007, 51 (6), 1926–1933. 10.1128/AAC.01607-06. PubMed DOI PMC

Jalovecka M.; Hartmann D.; Miyamoto Y.; Eckmann L.; Hajdusek O.; O’Donoghue A. J.; Sojka D. Validation of Babesia Proteasome as a Drug Target. Int. J. Parasitol.: Drugs Drug Resist. 2018, 8 (3), 394–402. 10.1016/j.ijpddr.2018.08.001. PubMed DOI PMC

Roth V.Doubling Time Computing. https://www.doubling-time.com/compute.php (accessed Oct 20, 2022).

Smíd O.; Horáková E.; Vilímová V.; Hrdý I.; Cammack R.; Horváth A.; Lukes J.; Tachezy J. Knock-Downs of Iron-Sulfur Cluster Assembly Proteins IscS and IscU Down-Regulate the Active Mitochondrion of Procyclic Trypanosoma Brucei. J. Biol. Chem. 2006, 281 (39), 28679–28686. 10.1074/jbc.M513781200. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...