Chelation of Mitochondrial Iron as an Antiparasitic Strategy
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
U10 CA021115
NCI NIH HHS - United States
PubMed
38287902
PubMed Central
PMC10862539
DOI
10.1021/acsinfecdis.3c00529
Knihovny.cz E-resources
- Keywords
- chelation, iron, mitochondria, parasites, protists,
- MeSH
- Anti-Infective Agents * MeSH
- Antiparasitic Agents pharmacology MeSH
- Iron Chelating Agents pharmacology therapeutic use MeSH
- Deferoxamine chemistry MeSH
- Mitochondria MeSH
- Iron * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Anti-Infective Agents * MeSH
- Antiparasitic Agents MeSH
- Iron Chelating Agents MeSH
- Deferoxamine MeSH
- Iron * MeSH
Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.
Centre for Infectious Diseases Parasitology Heidelberg University Hospital Heidelberg 69120 Germany
Department of Organic Chemistry Faculty of Science Charles University Prague 128 00 Czech Republic
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec 25250 Czech Republic
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec 25250 Czech Republic
See more in PubMed
Murphy M. P. Selective Targeting of Bioactive Compounds to Mitochondria. Trends Biotechnol. 1997, 15 (8), 326–330. 10.1016/S0167-7799(97)01068-8. PubMed DOI
Murphy M. P. Targeting Lipophilic Cations to Mitochondria. Biochim. Biophys. Acta, Bioenerg. 2008, 1777 (7–8), 1028–1031. 10.1016/j.bbabio.2008.03.029. PubMed DOI
Ma C.; Xia F.; Kelley S. O. Mitochondrial Targeting of Probes and Therapeutics to the Powerhouse of the Cell. Bioconjugate Chem. 2020, 31 (12), 2650–2667. 10.1021/acs.bioconjchem.0c00470. PubMed DOI
Stemberkova-Hubackova S.; Zobalova R.; Dubisova M.; Smigova J.; Dvorakova S.; Korinkova K.; Ezrova Z.; Endaya B.; Blazkova K.; Vlcak E.; Brisudova P.; Le D. T.; Juhas S.; Rosel D.; Kelemen C. D.; Sovilj D.; Vacurova E.; Cajka T.; Filimonenko V.; Dong L.; Andera L.; Hozak P.; Brabek J.; Bielcikova Z.; Stursa J.; Werner L.; Neuzil J. Simultaneous Targeting of Mitochondrial Metabolism and Immune Checkpoints as a New Strategy for Renal Cancer Therapy. Clin. Transl. Med. 2022, 12 (3), e64510.1002/CTM2.645. PubMed DOI PMC
Modica-Napolitano J. S.; Aprille J. R. Delocalized Lipophilic Cations Selectively Target the Mitochondria of Carcinoma Cells. Adv. Drug Delivery Rev. 2001, 49 (1–2), 63–70. 10.1016/S0169-409X(01)00125-9. PubMed DOI
Bielcikova Z.; Stursa J.; Krizova L.; Dong L.; Spacek J.; Hlousek S.; Vocka M.; Rohlenova K.; Bartosova O.; Cerny V.; Padrta T.; Pesta M.; Michalek P.; Hubackova S. S.; Kolostova K.; Pospisilova E.; Bobek V.; Klezl P.; Zobalova R.; Endaya B.; Rohlena J.; Petruzelka L.; Werner L.; Neuzil J. Mitochondrially Targeted Tamoxifen in Patients with Metastatic Solid Tumours: An Open-Label, Phase I/Ib Single-Centre Trial. EClinicalMedicine 2023, 57, 101873.10.1016/j.eclinm.2023.101873. PubMed DOI PMC
Rohlenova K.; Sachaphibulkij K.; Stursa J.; Bezawork-Geleta A.; Blecha J.; Endaya B.; Werner L.; Cerny J.; Zobalova R.; Goodwin J.; Spacek T.; Alizadeh Pesdar E.; Yan B.; Nguyen M. N.; Vondrusova M.; Sobol M.; Jezek P.; Hozak P.; Truksa J.; Rohlena J.; Dong L. F.; Neuzil J. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid. Redox Signaling 2017, 26 (2), 84–103. 10.1089/ars.2016.6677. PubMed DOI PMC
Arbon D.; Ženíšková K.; Šubrtová K.; Mach J.; Štursa J.; Machado M.; Zahedifard F.; Leštinová T.; Hierro-Yap C.; Neuzil J.; Volf P.; Ganter M.; Zoltner M.; Zíková A.; Werner L.; Sutak R. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob. Agents Chemother. 2022, 66 (8), e007272210.1128/aac.00727-22. PubMed DOI PMC
Manzano J. I.; Cueto-Díaz E. J.; Olías-Molero A. I.; Perea A.; Herraiz T.; Torrado J. J.; Alunda J. M.; Gamarro F.; Dardonville C. Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis. J. Med. Chem. 2019, 62 (23), 10664–10675. 10.1021/acs.jmedchem.9b00998. PubMed DOI
Cortes L. A.; Castro L.; Pesce B.; Maya J. D.; Ferreira J.; Castro-Castillo V.; Parra E.; Jara J. A.; López-Muñoz R. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity. PLoS One 2015, 10 (8), e013685210.1371/journal.pone.0136852. PubMed DOI PMC
Alkhaldi A. A. M.; Martinek J.; Panicucci B.; Dardonville C.; Zíková A.; de Koning H. P. Trypanocidal Action of Bisphosphonium Salts through a Mitochondrial Target in Bloodstream Form Trypanosoma Brucei. Int. J. Parasitol.: Drugs Drug Resist. 2016, 6 (1), 23–34. 10.1016/j.ijpddr.2015.12.002. PubMed DOI PMC
Taladriz A.; Healy A.; Flores Pérez E. J.; Herrero García V.; Ríos Martínez C.; Alkhaldi A. A. M.; Eze A. A.; Kaiser M.; de Koning H. P.; Chana A.; Dardonville C. Synthesis and Structure-Activity Analysis of New Phosphonium Salts with Potent Activity against African Trypanosomes. J. Med. Chem. 2012, 55 (6), 2606–2622. 10.1021/jm2014259. PubMed DOI
Mach J.; Sutak R. Iron in Parasitic Protists - from Uptake to Storage and Where We Can Interfere. Metallomics 2020, 12 (9), 1335–1347. 10.1039/d0mt00125b. PubMed DOI
Ibrahim O.; O’Sullivan J. Iron Chelators in Cancer Therapy. BioMetals 2020, 33 (4–5), 201–215. 10.1007/s10534-020-00243-3. PubMed DOI
Arbon D.; Ženíšková K.; Mach J.; Grechnikova M.; Malych R.; Talacko P.; Sutak R. Adaptive Iron Utilization Compensates for the Lack of an Inducible Uptake System in Naegleria Fowleri and Represents a Potential Target for Therapeutic Intervention. PLoS Neglected Trop. Dis. 2020, 14 (6), e000775910.1371/JOURNAL.PNTD.0007759. PubMed DOI PMC
Soteriadou K.; Papavassiliou P.; Voyiatzaki C.; Boelaert J. Effect of Iron Chelation on the In-Vitro Growth of Leishmania Promastigotes. J. Antimicrob. Chemother. 1995, 35 (1), 23–29. 10.1093/jac/35.1.23. PubMed DOI
Merschjohann K.; Steverding D. In vitro growth inhibition of bloodstream forms of Trypanosoma brucei and Trypanosoma congolenseby iron chelators. Kinetoplastid Biol. Dis. 2006, 5, 3.10.1186/1475-9292-5-3. PubMed DOI PMC
Yawalkar S. J. Milestones in the Research and Development of Desferrioxamine. Nephrol., Dial., Transplant. 1993, 8 (supp1), 40–42. 10.1093/ndt/8.supp1.40. PubMed DOI
Deferoxamine: Uses, Interactions, Mechanism of Action, DrugBank. https://go.drugbank.com/drugs/DB00746 (accessed Nov 9, 2022).
Dayani P. N.; Bishop M. C.; Black K.; Zeltzer P. M. Desferoxamine (DFO) – Mediated Iron Chelation: Rationale for a Novel Approach to Therapy for Brain Cancer. J. Neuro-Oncol. 2004, 67 (3), 367–377. 10.1023/B:NEON.0000024238.21349.37. PubMed DOI
Komoto K.; Nomoto T.; el Muttaqien S.; Takemoto H.; Matsui M.; Miura Y.; Nishiyama N. Iron Chelation Cancer Therapy Using Hydrophilic Block Copolymers Conjugated with Deferoxamine. Cancer Sci. 2021, 112 (1), 410–421. 10.1111/cas.14607. PubMed DOI PMC
Bajbouj K.; Shafarin J.; Hamad M. High-Dose Deferoxamine Treatment Disrupts Intracellular Iron Homeostasis, Reduces Growth, and Induces Apoptosis in Metastatic and Nonmetastatic Breast Cancer Cell Lines. Technol. Cancer Res. Treat. 2018, 17, 153303381876447.10.1177/1533033818764470. PubMed DOI PMC
Raventos-Suarez C.; Pollack S.; Nagel R. L. Plasmodium Falciparum: Inhibition of in Vitro Growth by Desferrioxamine. Am. J. Trop. Med. Hyg. 1982, 31 (5), 919–922. 10.4269/ajtmh.1982.31.919. PubMed DOI
Arantes J. M.; Lú Cia Pedrosa M.; Rodrigues Martins H.; Veloso M.; de Lana M.; Terezinha Bahia M.; Luiz Tafuri W.; Martins Carneiro C. Trypanosoma Cruzi: Treatment with the Iron Chelator Desferrioxamine Reduces Parasitemia and Mortality in Experimentally Infected Mice. Exp. Parasitol. 2007, 117 (1), 43–50. 10.1016/j.exppara.2007.03.006. PubMed DOI
Sandoval-Acuña C.; Torrealba N.; Tomkova V.; Jadhav S. B.; Blazkova K.; Merta L.; Lettlova S.; Adamcova M. K.; Rosel D.; Brabek J.; Neuzil J.; Stursa J.; Werner L.; Truksa J. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res. 2021, 81 (9), 2289–2303. 10.1158/0008-5472.CAN-20-1628. PubMed DOI
Nolan D. P.; Voorheis H. P. The Mitochondrion in Bloodstream Forms of Trypanosoma Brucei Is Energized by the Electrogenic Pumping of Protons Catalysed by the F1F0-ATPase. Eur. J. Biochem. 1992, 209 (1), 207–216. 10.1111/j.1432-1033.1992.tb17278.x. PubMed DOI
Glaser T. A.; Utz G. L.; Mukkada A. J. The Plasma Membrane Electrical Gradient (Membrane Potential) in Leishmania Donovani Promastigotes and Amastigotes. Mol. Biochem. Parasitol. 1992, 51 (1), 9–15. 10.1016/0166-6851(92)90195-P. PubMed DOI
Chen H.; Zhou X.; Ren B.; Cheng L. The Regulation of Hyphae Growth in Candida Albicans. Virulence 2020, 11 (1), 337–348. 10.1080/21505594.2020.1748930. PubMed DOI PMC
Garcia-Rubio R.; de Oliveira H. C.; Rivera J.; Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993.10.3389/fmicb.2019.02993. PubMed DOI PMC
Casadevall A.; Coelho C.; Cordero R. J. B.; Dragotakes Q.; Jung E.; Vij R.; Wear M. P. The Capsule of Cryptococcus Neoformans. Virulence 2019, 10 (1), 822–831. 10.1080/21505594.2018.1431087. PubMed DOI PMC
Robertson E. J.; Najjuka G.; Rolfes M. A.; Akampurira A.; Jain N.; Anantharanjit J.; von Hohenberg M.; Tassieri M.; Carlsson A.; Meya D. B.; Harrison T. S.; Fries B. C.; Boulware D. R.; Bicanic T. Cryptococcus Neoformans Ex Vivo Capsule Size Is Associated with Intracranial Pressure and Host Immune Response in HIV-Associated Cryptococcal Meningitis. J. Infect. Dis. 2014, 209 (1), 74–82. 10.1093/infdis/jit435. PubMed DOI PMC
García-Rodas R.; Cordero R. J. B.; Trevijano-Contador N.; Janbon G.; Moyrand F.; Casadevall A.; Zaragoza O. Capsule Growth in Cryptococcus Neoformans Is Coordinated with Cell Cycle Progression. mBio 2014, 5 (3), e00945-1410.1128/mbio.00945-14. PubMed DOI PMC
Guess T.; Lai H.; Smith S. E.; Sircy L.; Cunningham K.; Nelson D. E.; McClelland E. E. Size Matters: Measurement of Capsule Diameter in Cryptococcus Neoformans. J. Vis. Exp. 2018, 132, 57171.10.3791/57171. PubMed DOI PMC
Lloyd J. B.; Cable H.; Rice-Evans C. Evidence That Desferrioxamine Cannot Enter Cells by Passive Diffusion. Biochem. Pharmacol. 1991, 41 (9), 1361–1363. 10.1016/0006-2952(91)90109-I. PubMed DOI
Tomás A. M.; Castro H. Redox Metabolism in Mitochondria of Trypanosomatids. Antioxid. Redox Signaling 2013, 19 (7), 696–707. 10.1089/ars.2012.4948. PubMed DOI PMC
Whitney L. C.; Bicanic T. Treatment Principles for Candida and Cryptococcus. Cold Spring Harbor Perspect. Med. 2015, 5 (6), a024158.10.1101/cshperspect.a024158. PubMed DOI PMC
Bassetti M.; Vena A.; Bouza E.; Peghin M.; Muñoz P.; Righi E.; Pea F.; Lackner M.; Lass-Flörl C. Antifungal Susceptibility Testing in Candida, Aspergillus and Cryptococcus Infections: Are the MICs Useful for Clinicians?. Clin. Microbiol. Infect. 2020, 26 (8), 1024–1033. 10.1016/j.cmi.2020.02.017. PubMed DOI
May R. C.; Stone N. R. H.; Wiesner D. L.; Bicanic T.; Nielsen K. Cryptococcus: From Environmental Saprophyte to Global Pathogen. Nat. Rev. Microbiol. 2016, 14 (2), 106–117. 10.1038/nrmicro.2015.6. PubMed DOI PMC
Vartivarian S. E.; Anaissie E. J.; Cowart R. E.; Sprigg H. A.; Tingler M. J.; Jacobson E. S. Regulation of Cryptococcal Capsular Polysaccharide by Iron. J. Infect. Dis. 1993, 167 (1), 186–190. 10.1093/infdis/167.1.186. PubMed DOI
Matsuu A.; Yamasaki M.; Xuan X.; Ikadai H.; Hikasa Y. In vitro evaluation of the growth inhibitory activities of 15 drugs against Babesia gibsoni (Aomori strain). Vet. Parasitol. 2008, 157 (1–2), 1–8. 10.1016/j.vetpar.2008.07.023. PubMed DOI
NCCLS , Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Second Edition, Document M27-A2; NCCLS, 2002: Vol 22, p 15.
Malandrin L.; L’Hostis M.; Chauvin A. Isolation of Babesia Divergens from Carrier Cattle Blood Using in Vitro Culture. Vet. Res. 2004, 35 (1), 131–139. 10.1051/vetres:2003047. PubMed DOI
Johnson J. D.; Dennull R. A.; Gerena L.; Lopez-Sanchez M.; Roncal N. E.; Waters N. C. Assessment and Continued Validation of the Malaria SYBR Green I-Based Fluorescence Assay for Use in Malaria Drug Screening. Antimicrob. Agents Chemother. 2007, 51 (6), 1926–1933. 10.1128/AAC.01607-06. PubMed DOI PMC
Jalovecka M.; Hartmann D.; Miyamoto Y.; Eckmann L.; Hajdusek O.; O’Donoghue A. J.; Sojka D. Validation of Babesia Proteasome as a Drug Target. Int. J. Parasitol.: Drugs Drug Resist. 2018, 8 (3), 394–402. 10.1016/j.ijpddr.2018.08.001. PubMed DOI PMC
Roth V.Doubling Time Computing. https://www.doubling-time.com/compute.php (accessed Oct 20, 2022).
Smíd O.; Horáková E.; Vilímová V.; Hrdý I.; Cammack R.; Horváth A.; Lukes J.; Tachezy J. Knock-Downs of Iron-Sulfur Cluster Assembly Proteins IscS and IscU Down-Regulate the Active Mitochondrion of Procyclic Trypanosoma Brucei. J. Biol. Chem. 2006, 281 (39), 28679–28686. 10.1074/jbc.M513781200. PubMed DOI