Structural insights into the interaction between adenovirus C5 hexon and human lactoferrin

. 2024 Mar 19 ; 98 (3) : e0157623. [epub] 20240207

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38323814

Grantová podpora
383821/2600 Přírodovědecká Fakulta, Univerzita Karlova (Faculty of Science, Charles University)
StG-2017 759661 EC | Horizon 2020 Framework Programme (H2020)

UNLABELLED: Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.

Zobrazit více v PubMed

Greber UF, Flatt JW. 2019. Adenovirus entry: from infection to immunity. Annu Rev Virol 6:177–197. doi:10.1146/annurev-virology-092818-015550 PubMed DOI

Benkő M, Aoki K, Arnberg N, Davison AJ, Echavarría M, Hess M, Jones MS, Kaján GL, Kajon AE, Mittal SK, Podgorski II, San Martín C, Wadell G, Watanabe H, Harrach B. 2022. ICTV virus taxonomy profile: adenoviridae 2022. J Gen Virol 103. doi:10.1099/jgv.0.001721 PubMed DOI PMC

Echavarría M. 2008. Adenoviruses in immunocompromised hosts. Clin Microbiol Rev 21:704–715. doi:10.1128/CMR.00052-07 PubMed DOI PMC

Proenca-Modena JL, de Souza Cardoso R, Criado MF, Milanez GP, de Souza WM, Parise PL, Bertol JW, de Jesus BLS, Prates MCM, Silva ML, Buzatto GP, Demarco RC, Valera FCP, Tamashiro E, Anselmo-Lima WT, Arruda E. 2019. Human adenovirus replication and persistence in hypertrophic adenoids and palatine tonsils in children. J Med Virol 91:1250–1262. doi:10.1002/jmv.25441 PubMed DOI PMC

Lion T. 2019. Adenovirus persistence, reactivation, and clinical management. FEBS Lett 593:3571–3582. doi:10.1002/1873-3468.13576 PubMed DOI

Ohnishi Y, Noda S. 1976. [Studies on the rabbit conjunctival cells in vitro (author’s transl)]. Nippon Ganka Gakkai Zasshi 80:1255–1263. PubMed

Berk AJ, Sharp PA. 1978. Structure of the adenovirus 2 early mRNAs. Cell 14:695–711. doi:10.1016/0092-8674(78)90252-0 PubMed DOI

Cepko CL, Sharp PA. 1982. Assembly of adenovirus major capsid protein is mediated by a nonvirion protein. Cell 31:407–415. doi:10.1016/0092-8674(82)90134-9 PubMed DOI

Lee A. 2023. Nadofaragene firadenovec: first approval. Drugs 83:353–357. doi:10.1007/s40265-023-01846-z PubMed DOI PMC

Sumida SM, Truitt DM, Kishko MG, Arthur JC, Jackson SS, Gorgone DA, Lifton MA, Koudstaal W, Pau MG, Kostense S, Havenga MJE, Goudsmit J, Letvin NL, Barouch DH. 2004. Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. J Virol 78:2666–2673. doi:10.1128/jvi.78.6.2666-2673.2004 PubMed DOI PMC

Tillman BW, de Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ, Gerritsen WR, Curiel DT. 1999. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 162:6378–6383. PubMed

Milligan ID, Gibani MM, Sewell R, Clutterbuck EA, Campbell D, Plested E, Nuthall E, Voysey M, Silva-Reyes L, McElrath MJ, et al. . 2016. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia ankara-vectored Ebola vaccines: a randomized clinical trial. JAMA 315:1610–1623. doi:10.1001/jama.2016.4218 PubMed DOI

Barouch DH, Tomaka FL, Wegmann F, Stieh DJ, Alter G, Robb ML, Michael NL, Peter L, Nkolola JP, Borducchi EN, et al. . 2018. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2A clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet 392:232–243. doi:10.1016/S0140-6736(18)31364-3 PubMed DOI PMC

Larocca RA, Mendes EA, Abbink P, Peterson RL, Martinot AJ, Iampietro MJ, Kang ZH, Aid M, Kirilova M, Jacob-Dolan C, Tostanoski L, Borducchi EN, De La Barrera RA, Barouch DH. 2019. Adenovirus vector-based vaccines confer maternal-fetal protection against zika virus challenge in pregnant IFN-alphabetaR(-/-) mice. Cell Host Microbe 26:591–600. doi:10.1016/j.chom.2019.10.001 PubMed DOI PMC

Williams K, Bastian AR, Feldman RA, Omoruyi E, de Paepe E, Hendriks J, van Zeeburg H, Godeaux O, Langedijk JPM, Schuitemaker H, Sadoff J, Callendret B. 2020. Phase 1 safety and Immunogenicity study of a respiratory syncytial virus vaccine with an adenovirus 26 vector encoding prefusion F (Ad26.RSV.preF) in adults aged >/=60 years. J Infect Dis 222:979–988. doi:10.1093/infdis/jiaa193 PubMed DOI

Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, et al. . 2021. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med 384:2187–2201. doi:10.1056/NEJMoa2101544 PubMed DOI PMC

Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323. doi:10.1126/science.275.5304.1320 PubMed DOI

Storm RJ, Persson BD, Skalman LN, Frangsmyr L, Lindstrom M, Rankin G, Lundmark R, Domellof FP, Arnberg N. 2017. Human adenovirus type 37 uses alpha(V)beta(1) and alpha(3)beta(1) integrins for infection of human corneal cells. J Virol 91 PubMed PMC

Mateo M, Generous A, Sinn PL, Cattaneo R. 2015. Connections matter--how viruses use cell-cell adhesion components. J Cell Sci 128:431–439. doi:10.1242/jcs.159400 PubMed DOI PMC

Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ. 2002. Adenovirus fiber disrupts CAR-mediated Intercellular adhesion allowing virus escape. Cell 110:789–799. doi:10.1016/s0092-8674(02)00912-1 PubMed DOI

Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J. 1999. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274:10219–10226. doi:10.1074/jbc.274.15.10219 PubMed DOI

Kotha PLN, Sharma P, Kolawole AO, Yan R, Alghamri MS, Brockman TL, Gomez-Cambronero J, Excoffon K. 2015. Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response. PLoS Pathog 11:e1004696. doi:10.1371/journal.ppat.1004696 PubMed DOI PMC

Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, Pink R, Buckley SMK, Greig JA, Denby L, Custers J, Morita T, Francischetti IMB, Monteiro RQ, Barouch DH, van Rooijen N, Napoli C, Havenga MJE, Nicklin SA, Baker AH. 2008. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132:397–409. doi:10.1016/j.cell.2008.01.016 PubMed DOI

Lyle C, McCormick F. 2010. Integrin alphavbeta5 is a primary receptor for adenovirus in CAR-negative cells. Virol J 7:148. doi:10.1186/1743-422X-7-148 PubMed DOI PMC

Chéneau C, Eichholz K, Tran TH, Tran TTP, Paris O, Henriquet C, Bajramovic JJ, Pugniere M, Kremer EJ. 2021. Lactoferrin retargets human adenoviruses to TLR4 to induce an abortive NLRP3-associated pyroptotic response in human phagocytes. Front Immunol 12:685218. doi:10.3389/fimmu.2021.685218 PubMed DOI PMC

Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. 1992. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121:130–136. doi:10.1016/0167-4838(92)90346-f PubMed DOI

Johansson C, Jonsson M, Marttila M, Persson D, Fan X-L, Skog J, Frängsmyr L, Wadell G, Arnberg N. 2007. Adenoviruses use lactoferrin as a bridge for CAR-independent binding to and infection of epithelial cells. J Virol 81:954–963. doi:10.1128/JVI.01995-06 PubMed DOI PMC

Persson BD, Lenman A, Frängsmyr L, Schmid M, Ahlm C, Plückthun A, Jenssen H, Arnberg N. 2020. Lactoferrin-hexon interactions mediate CAR-independent adenovirus infection of human respiratory cells. J Virol 94:e00542-20. doi:10.1128/JVI.00542-20 PubMed DOI PMC

Jonsson MI, Lenman AE, Frängsmyr L, Nyberg C, Abdullahi M, Arnberg N. 2009. Coagulation factors IX and X enhance binding and infection of adenovirus types 5 and 31 in human epithelial cells. J Virol 83:3816–3825. doi:10.1128/JVI.02562-08 PubMed DOI PMC

Lenman A, Müller S, Nygren MI, Frängsmyr L, Stehle T, Arnberg N. 2011. Coagulation factor IX mediates serotype-specific binding of species A adenoviruses to host cells. J Virol 85:13420–13431. doi:10.1128/JVI.06088-11 PubMed DOI PMC

Wälti MA, Canagarajah B, Schwieters CD, Clore GM. 2021. Visualization of sparsely-populated lower-order oligomeric states of human mitochondrial Hsp60 by cryo-electron microscopy. J Mol Biol 433:167322. doi:10.1016/j.jmb.2021.167322 PubMed DOI PMC

Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. 2003. The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi:10.1016/s1090-7807(02)00014-9 PubMed DOI

Martin TR, Frevert CW. 2005. Innate immunity in the lungs. Proc Am Thorac Soc 2:403–411. doi:10.1513/pats.200508-090JS PubMed DOI PMC

Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. 2017. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 18:1985. doi:10.3390/ijms18091985 PubMed DOI PMC

Sano H, Nagai K, Tsutsumi H, Kuroki Y. 2003. Lactoferrin and surfactant protein A exhibit distinct binding specificity to F protein and differently modulate respiratory syncytial virus infection. Eur J Immunol 33:2894–2902. doi:10.1002/eji.200324218 PubMed DOI

Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, Polimeni A, Valenti P. 2011. Antiviral properties of lactoferrin--a natural immunity molecule. Molecules 16:6992–7018. doi:10.3390/molecules16086992 PubMed DOI PMC

Lönnerdal B, Iyer S. 1995. Lactoferrin: molecular structure and biological function. Annu Rev Nutr 15:93–110. doi:10.1146/annurev.nu.15.070195.000521 PubMed DOI

Gallardo J, Pérez-Illana M, Martín-González N, San Martín C. 2021. Adenovirus structure: what is new. Int J Mol Sci 22:5240. doi:10.3390/ijms22105240 PubMed DOI PMC

Toczyłowska-Mamińska R, Dołowy K. 2012. Ion transporting proteins of human bronchial epithelium. J Cell Biochem 113:426–432. doi:10.1002/jcb.23393 PubMed DOI

Luk CK, Dulfano MJ. 1983. Effect of pH, viscosity and ionic-strength changes on ciliary beating frequency of human bronchial explants. Clin Sci (Lond) 64:449–451. doi:10.1042/cs0640449 PubMed DOI

Tabary O, Muselet C, Miesch MC, Yvin JC, Clément A, Jacquot J. 2003. Reduction of chemokine IL-8 and RANTES expression in human bronchial epithelial cells by a sea-water derived saline through inhibited nuclear factor-kappaB activation. Biochem Biophys Res Commun 309:310–316. doi:10.1016/j.bbrc.2003.07.006 PubMed DOI

Fajac I, Burgel PR. 2023. Cystic fibrosis. Presse Med 52:104169. doi:10.1016/j.lpm.2023.104169 PubMed DOI

Saint-Criq V, Gray MA. 2017. Role of CFTR in epithelial physiology. Cell Mol Life Sci 74:93–115. doi:10.1007/s00018-016-2391-y PubMed DOI PMC

Hosoya K, Lee VHL, Kim K-J. 2005. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm 60:227–240. doi:10.1016/j.ejpb.2004.12.007 PubMed DOI

Vallat B, Webb B, Fayazi M, Voinea S, Tangmunarunkit H, Ganesan SJ, Lawson CL, Westbrook JD, Kesselman C, Sali A, Berman HM. 2021. New system for archiving integrative structures. Acta Crystallogr D Struct Biol 77:1486–1496. doi:10.1107/S2059798321010871 PubMed DOI PMC

Aricescu AR, Lu W, Jones EY. 2006. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250. doi:10.1107/S0907444906029799 PubMed DOI

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. Colabfold: making protein folding accessible to all. Nat Methods 19:679–682. doi:10.1038/s41592-022-01488-1 PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501. doi:10.1107/S0907444910007493 PubMed DOI PMC

Hernández H, Robinson CV. 2007. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726. doi:10.1038/nprot.2007.73 PubMed DOI

Krichel B, Bylapudi G, Schmidt C, Blanchet C, Schubert R, Brings L, Koehler M, Zenobi R, Svergun D, Lorenzen K, Madhugiri R, Ziebuhr J, Uetrecht C. 2021. Hallmarks of alpha- and betacoronavirus non-structural protein 7+8 complexes. Sci Adv 7 PubMed PMC

Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP, Robinson CV. 2015. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87:4370–4376. doi:10.1021/acs.analchem.5b00140 PubMed DOI PMC

Iacobucci C, Götze M, Ihling CH, Piotrowski C, Arlt C, Schäfer M, Hage C, Schmidt R, Sinz A. 2018. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the merox software for studying protein structures and protein-protein interactions. Nat Protoc 13:2864–2889. doi:10.1038/s41596-018-0068-8 PubMed DOI

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. doi:10.1038/nmeth.4169 PubMed DOI

Rohou A, Grigorieff N. 2015. Ctffind4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221. doi:10.1016/j.jsb.2015.08.008 PubMed DOI PMC

Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr D Struct Biol 75:861–877. doi:10.1107/S2059798319011471 PubMed DOI PMC

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. doi:10.1107/S0907444909042073 PubMed DOI PMC

D.A. Case HMA, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR, Cerutti DS, Cisneros GA, Cruzeiro VWD, Darden TA, Forouzesh N, et al. . 2020. Amber 2020. University of California, San Francisco.

Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C. 2020. Ff19Sb: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput 16:528–552. doi:10.1021/acs.jctc.9b00591 PubMed DOI

Berendsen HJC, Grigera JR, Straatsma TP. 1987. The missing term in effective pair potentials. J Phys Chem 91:6269–6271. doi:10.1021/j100308a038 DOI

Srb P, Svoboda M, Benda L, Lepšík M, Tarábek J, Šícha V, Grüner B, Grantz-Šašková K, Brynda J, Řezáčová P, Konvalinka J, Veverka V. 2019. Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Phys Chem Chem Phys 21:5661–5673. doi:10.1039/c9cp00416e PubMed DOI

Ryckaert J-P, Ciccotti G, Berendsen HJC. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5 DOI

Hopkins CW, Le Grand S, Walker RC, Roitberg AE. 2015. Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput 11:1864–1874. doi:10.1021/ct5010406 PubMed DOI

Roe DR, Cheatham TE, 3rd. 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. doi:10.1021/ct400341p PubMed DOI

Merkley ED, Rysavy S, Kahraman A, Hafen RP, Daggett V, Adkins JN. 2014. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances. Protein Sci 23:747–759. doi:10.1002/pro.2458 PubMed DOI PMC

Schwieters CD, Bermejo GA, Clore GM. 2018. Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci 27:26–40. doi:10.1002/pro.3248 PubMed DOI PMC

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...