Plasminogen activator inhibitor-1 serum levels in frontotemporal lobar degeneration
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LX22NPO5107
National Institute for Neurological Research Programme EXCELES, ID Project No.
TO01000215
EEA/ Norway Grants
NV19-04-00560
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38386354
PubMed Central
PMC10902304
DOI
10.1111/jcmm.18013
Knihovny.cz E-zdroje
- Klíčová slova
- dementia, frontotemporal lobar degeneration, plasminogen activator inhibitor‐1, tissue‐type plasminogen activator,
- MeSH
- biologické markery krev MeSH
- frontotemporální lobární degenerace * krev MeSH
- inhibitor aktivátoru plazminogenu 1 * krev MeSH
- kognitivní dysfunkce krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- tkáňový aktivátor plazminogenu krev metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- inhibitor aktivátoru plazminogenu 1 * MeSH
- SERPINE1 protein, human MeSH Prohlížeč
- tkáňový aktivátor plazminogenu MeSH
Plasminogen activator inhibitor-1 (PAI-1) impedes brain plasmin synthesis. Reduced plasmin activity facilitates cumulation of amyloid beta (Aβ) in Alzheimer's disease (AD). Since plasmin also regulates the synaptic activity, it is possible that altered PAI-1 is present in other neurodegenerative disorders. We investigated whether PAI-1 and its counter-regulatory tissue plasminogen activator (tPA) are altered in serum of patients with dementia due to frontotemporal lobar degeneration (FTLD). Thirty five FTLD patients (21 in mild cognitive impairment stage (MCI) and 14 in dementia stage) and 10 cognitively healthy controls were recruited. Serum tPA and PAI-1 protein levels were measured by anova. Correlation between biochemical and demographic data were explored by measuring Pearson correlation coefficient. Serum PAI-1 levels were elevated in the FTLD dementia group as compared to FTLD MCI and controls. tPA serum levels and PAI-1/tPA ratio did not significantly differ among groups. There was a negative correlation between PAI-1 serum levels and disease severity measured by MMSE score. No correlations of tPA serum levels and PAI-1/tPA ratio with MMSE were found. Increased PAI-1 serum levels may serve as a marker of dementia in FTLD, suggesting that, besides Aβ pathway, the plasmin system may affect cognition through synaptic activity.
Zobrazit více v PubMed
Kanno Y. The role of fibrinolytic regulators in vascular dysfunction of systemic sclerosis. Int J Mol Sci. 2019;20:619. PubMed PMC
Medcalf RL. Fibrinolysis: from blood to the brain. J Thromb Haemost. 2017;15:2089‐2098. PubMed
Idell RD, Florova G, Komissarov AA, Shetty S, Girard RBS, Idell S. The fibrinolytic system: a new target for treatment of depression with psychedelics. Med Hypotheses. 2017;100:46‐53. PubMed
Samson AL, Medcalf RL. Tissue‐type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673‐678. PubMed
Ploplis V, Castellino F. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647‐654. PubMed
Salles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator‐plasmin system in the hippocampus. J Neurosci. 2002;22:2125‐2134. PubMed PMC
Yepes M, Roussel BD, Ali C, Vivien D. Tissue‐type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32:48‐55. PubMed
Sashindranath M, Sales E, Daglas M, et al. The tissue‐type plasminogen activator–plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain. 2012;135:3251‐3264. PubMed PMC
Kim KS, Choi YR, Park J‐Y, et al. Proteolytic cleavage of extracellular α‐synuclein by plasmin. J Biol Chem. 2012;287:24862‐24872. PubMed PMC
Barker R, Love S, Kehoe PG. Plasminogen and plasmin in Alzheimer's disease. Brain Res. 2010;1355:7‐15. PubMed
Barker R, Kehoe PG, Love S. Activators and inhibitors of the plasminogen system in Alzheimer's disease. J Cell Mol Med. 2012;16:865‐876. PubMed PMC
Ledesma MD, Abad‐Rodriguez J, Galvan C, et al. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep. 2003;4:1190‐1196. PubMed PMC
Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG. Brain plasmin enhances APP α‐cleavage and Aβ degradation and is reduced in Alzheimer's disease brains. EMBO Rep. 2000;1:530‐535. PubMed PMC
Angelucci F, Veverova K, Katonová A, Piendel L, Vyhnalek M, Hort J. Alzheimer's disease severity is associated with an imbalance in serum levels of enzymes regulating plasmin synthesis. Pharmaceuticals (Basel). 2022;15:15. PubMed PMC
Melchor JP, Pawlak R, Strickland S. The tissue plasminogen activator‐plasminogen proteolytic Cascade accelerates amyloid‐β (Aβ) degradation and inhibits Aβ‐induced neurodegeneration. J Neurosci. 2003;23:8867‐8871. PubMed PMC
Angelucci F, Čechová K, Průša R, Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: consequences on extracellular maturation of brain‐derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther. 2018;1–11:303‐313. PubMed PMC
Seeley WW. Behavioral variant frontotemporal dementia. Continuum (Minneap Minn). 2019;25:76‐100. PubMed
Irwin DJ, Cairns NJ, Grossman M, et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine HHS public access. Acta Neuropathol. 2015;129:469‐491. PubMed PMC
Neumann M, Mackenzie IRA. Review: neuropathology of non‐tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2019;45:19‐40. PubMed
Mattsson‐Carlgren N, Grinberg LT, Boxer A, et al. Cerebrospinal fluid biomarkers in autopsy‐confirmed Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2022;98:e1137‐e1150. PubMed PMC
Sheardova K, Vyhnalek M, Nedelska Z, et al. Czech brain aging study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in The Czech Republic. BMJ Open. 2019;9:e030379. PubMed PMC
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456‐2477. PubMed PMC
Gorno‐Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006‐1014. PubMed PMC
Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364:2227‐2234. PubMed
Yesavage JA. Geriatric depression scale. Psychopharmacol Bull. 1988;24:709‐711. PubMed
Fazekas F, Chawluk J, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. Am J Roentgenol. 1987;149:351‐356. PubMed
Parizkova M, Lerch O, Moffat SD, et al. The effect of Alzheimer's disease on spatial navigation strategies. Neurobiol Aging. 2018;64:107‐115. PubMed
Laczó M, Lerch O, Martinkovic L, et al. Spatial pattern separation testing differentiates Alzheimer's disease biomarker‐positive and biomarker‐negative older adults with amnestic mild cognitive impairment. Front Aging Neurosci. 2021;13:774600. PubMed PMC
Cerman J, Laczó J, Vyhnálek M, Malinovská J, Hanzalová J, Hort J. Cerebrospinal fluid ratio of phosphorylated tau protein and beta amyloid predicts amyloid PET positivity. Česká a Slov Neurol a Neurochir. 2020;83(116):173‐179.
Wang J, Yuan Y, Cai R, et al. Association between plasma levels of PAI‐1, tPA/PAI‐1 molar ratio, and mild cognitive impairment in Chinese patients with type 2 diabetes mellitus. J Alzheimers Dis. 2018;63:835‐845. PubMed
Jacobsen JS, Comery TA, Martone RL, et al. Enhanced clearance of a in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci. 2008;105:8754‐8759. PubMed PMC
Tucker HM, Kihiko M, Caldwell JN, et al. The plasmin system is induced by and degrades amyloid‐β aggregates. J Neurosci. 2000;20:3937‐3946. PubMed PMC
Tucker HM, Kihiko‐Ehmann M, Wright S, Rydel RE, Estus S. Tissue plasminogen activator requires plasminogen to modulate amyloid‐β neurotoxicity and deposition. J Neurochem. 2002;75:2172‐2177. PubMed
Nicole O, Docagne F, Ali C, et al. The proteolytic activity of tissue‐plasminogen activator enhances NMDA receptor‐mediated signaling. Nat Med. 2001;7:59‐64. PubMed
Huang YY, Bach ME, Lipp HP, et al. Mice lacking the gene encoding tissue‐type plasminogen activator show a selective interference with late‐phase long‐term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci. 1996;93:8699‐8704. PubMed PMC
Leal G, Bramham CR, Duarte CB. BDNF and hippocampal synaptic plasticity. Vitam Horm. 2017;104:153–195. PubMed
Mossiat C, Prigent‐Tessier A, Garnier P, et al. Exogenous t‐PA Administration increases hippocampal mature BDNF levels. Plasmin‐ or NMDA‐dependent mechanism? PLoS One. 2014;9:e92416. PubMed PMC
Gerenu G, Martisova E, Ferrero H, et al. Modulation of BDNF cleavage by plasminogen‐activator inhibitor‐1 contributes to Alzheimer's neuropathology and cognitive deficits. Biochim Biophys Acta Mol Basis Dis. 2017;1863:991‐1001. PubMed
Gray K, Ellis V. Activation of pro‐BDNF by the pericellular serine protease plasmin. FEBS Lett. 2008;582:907‐910. PubMed
Borba EM, Duarte JA, Bristot G, Scotton E, Camozzato AL, Chaves MLF. Brain‐derived neurotrophic factor serum levels and hippocampal volume in mild cognitive impairment and dementia due to Alzheimer disease. Dement Geriatr Cogn Dis Extra. 2016;6:559‐567. PubMed PMC
Budni J, Bellettini‐Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis. 2015;6:331‐341. PubMed PMC