Shared input and recurrency in neural networks for metabolically efficient information transmission
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38394341
PubMed Central
PMC10917264
DOI
10.1371/journal.pcbi.1011896
PII: PCOMPBIOL-D-23-00763
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- modely neurologické MeSH
- nervová síť * fyziologie MeSH
- nervový přenos * fyziologie MeSH
- nervový útlum fyziologie MeSH
- neuronové sítě (počítačové) MeSH
- počítačová simulace MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.
Zobrazit více v PubMed
Barlow HB. Possible Principles Underlying the Transformations of Sensory Messages. In: Sensory Communication. The MIT Press; 1961. p. 217–234.
Attwell D, Laughlin SB. An Energy Budget for Signaling in the Grey Matter of the Brain. J Cereb Blood Flow Metab. 2001;21(10):1133–1145. doi: 10.1097/00004647-200110000-00001 PubMed DOI
Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron. 2012;75(5):762–777. doi: 10.1016/j.neuron.2012.08.019 PubMed DOI
Levy WB, Baxter RA. Energy Efficient Neural Codes. Neural Comput. 1996;8(3):531–543. doi: 10.1162/neco.1996.8.3.531 PubMed DOI
Balasubramanian V, Kimber D, Berry MJ II. Metabolically Efficient Information Processing. Neural Comput. 2001;13(4):799–815. doi: 10.1162/089976601300014358 PubMed DOI
Laughlin S. Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol. 2001;11(4):475–480. doi: 10.1016/S0959-4388(00)00237-3 PubMed DOI
Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol. 2008;211(11):1792–1804. doi: 10.1242/jeb.017574 PubMed DOI
Yu L, Yu Y. Energy-efficient neural information processing in individual neurons and neuronal networks. J Neurosci Res. 2017;95(11):2253–2266. doi: 10.1002/jnr.24131 PubMed DOI
Sengupta B, Laughlin SB, Niven JE. Balanced Excitatory and Inhibitory Synaptic Currents Promote Efficient Coding and Metabolic Efficiency. PLoS Comput Biol. 2013;9(10):e1003263. doi: 10.1371/journal.pcbi.1003263 PubMed DOI PMC
Barta T, Kostal L. The effect of inhibition on rate code efficiency indicators. PLoS Comput Biol. 2019;15(12):e1007545. doi: 10.1371/journal.pcbi.1007545 PubMed DOI PMC
Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y. Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons. Neuron. 2003;37(4):663–680. doi: 10.1016/S0896-6273(03)00064-3 PubMed DOI
Brunel N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. J Comput Neurosci. 2000;8:183–208. doi: 10.1023/A:1008925309027 PubMed DOI
Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, et al.. The Asynchronous State in Cortical Circuits. Science. 2010;327(5965):587–590. doi: 10.1126/science.1179850 PubMed DOI PMC
Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of Neural-Network Activity by Inhibitory Feedback. PLoS Comp Biol. 2012;8(8):e1002596. doi: 10.1371/journal.pcbi.1002596 PubMed DOI PMC
Bernacchia A, Wang XJ. Decorrelation by Recurrent Inhibition in Heterogeneous Neural Circuits. Neural Comput. 2013;25(7):1732–1767. doi: 10.1162/NECO_a_00451 PubMed DOI PMC
Abbott LF, Dayan P. The Effect of Correlated Variability on the Accuracy of a Population Code. Neural Comput. 1999;11(1):91–101. doi: 10.1162/089976699300016827 PubMed DOI
Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci. 2006;7(5):358–366. doi: 10.1038/nrn1888 PubMed DOI
Panzeri S, Moroni M, Safaai H, Harvey CD. The structures and functions of correlations in neural population codes. Nat Rev Neurosci. 2022;23(9):551–567. doi: 10.1038/s41583-022-00606-4 PubMed DOI
Shadlen MN, Newsome WT. The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding. J Neurosci. 1998;18(10):3870–3896. doi: 10.1523/JNEUROSCI.18-10-03870.1998 PubMed DOI PMC
Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correlations. Nature Neuroscience. 2014;17(10):1410–1417. doi: 10.1038/nn.3807 PubMed DOI PMC
Blahut R. Computation of channel capacity and rate-distortion functions. IEEE Trans Inf Theory. 1972;18(4):460–473. doi: 10.1109/TIT.1972.1054855 DOI
Jimbo M, Kunisawa K. An iteration method for calculating the relative capacity. Information and Control. 1979;43(2):216–223. doi: 10.1016/S0019-9958(79)90719-8 DOI
Suksompong P, Berger T. Capacity Analysis for Integrate-and-Fire Neurons With Descending Action Potential Thresholds. IEEE Trans Inf Theory. 2010;56(2):838–851. doi: 10.1109/TIT.2009.2037042 DOI
Kostal L, Lansky P. Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons. Biosystems. 2013;112(3):265–275. doi: 10.1016/j.biosystems.2013.03.019 PubMed DOI
Kostal L, Lansky P, McDonnell MD. Metabolic cost of neuronal information in an empirical stimulus-response model. Biol Cybern. 2013;107(3):355–365. doi: 10.1007/s00422-013-0554-6 PubMed DOI
Stemmler M. A single spike suffices: the simplest form of stochastic resonance in model neurons. Network. 1996;7(4):687–716. doi: 10.1088/0954-898X_7_4_005 DOI
Greenwood PE, Lansky P. Optimum signal in a simple neuronal model with signal-dependent noise. Biol Cybern. 2005;92(3):199–205. doi: 10.1007/s00422-005-0545-3 PubMed DOI
Meyer HS, Wimmer VC, Oberlaender M, de Kock CPJ, Sakmann B, Helmstaedter M. Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex. Cereb Cortex. 2010;20(10):2277–2286. doi: 10.1093/cercor/bhq067 PubMed DOI PMC
Bernardi D, Doron G, Brecht M, Lindner B. A network model of the barrel cortex combined with a differentiator detector reproduces features of the behavioral response to single-neuron stimulation. PLOS Comput Biol. 2021;17(2). doi: 10.1371/journal.pcbi.1007831 PubMed DOI PMC
Hennequin G, Vogels T, Gerstner W. Optimal Control of Transient Dynamics in Balanced Networks Supports Generation of Complex Movements. Neuron. 2014;82(6):1394–1406. doi: 10.1016/j.neuron.2014.04.045 PubMed DOI PMC
Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cereb Cortex. 2014;24(3):785–806. doi: 10.1093/cercor/bhs358 PubMed DOI PMC
Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, et al.. Reconstructing neuronal circuitry from parallel spike trains. Nat Commun. 2019;10(1):4468. doi: 10.1038/s41467-019-12225-2 PubMed DOI PMC
Barta T, Kostal L. Regular spiking in high-conductance states: The essential role of inhibition. Phys Rev E. 2021;103(2):022408. doi: 10.1103/PhysRevE.103.022408 PubMed DOI
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 2020;17(3):261–272. doi: 10.1038/s41592-019-0686-2 PubMed DOI PMC
Padamsey Z, Katsanevaki D, Dupuy N, Rochefort NL. Neocortex saves energy by reducing coding precision during food scarcity. Neuron. 2022;110(2):280–296. doi: 10.1016/j.neuron.2021.10.024 PubMed DOI PMC
Kobayashi R, Tsubo Y, Shinomoto S. Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci. 2009;3:9. doi: 10.3389/neuro.10.009.2009 PubMed DOI PMC
Zerlaut Y, Chemla S, Chavane F, Destexhe A. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. J Comput Neurosci. 2017;44(1):45–61. doi: 10.1007/s10827-017-0668-2 PubMed DOI
Laughlin S. A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch [C]. 1981;36(9-10):910–912. doi: 10.1515/znc-1981-9-1040 PubMed DOI
Kostal L, Lansky P, Rospars JP. Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comput Biol. 2008;4:e1000053. doi: 10.1371/journal.pcbi.1000053 PubMed DOI PMC
Treves A, Panzeri S, Rolls ET, Booth M, Wakeman EA. Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Comput. 1999;11(3):601–632. doi: 10.1162/089976699300016593 PubMed DOI
de Polavieja GG. Errors Drive the Evolution of Biological Signalling to Costly Codes. J Theor Biol. 2002;214(4):657–664. doi: 10.1006/jtbi.2001.2498 PubMed DOI
de Polavieja GG. Reliable biological communication with realistic constraints. Phys Rev E. 2004;70(6). doi: 10.1103/PhysRevE.70.061910 PubMed DOI
Kostal L, Kobayashi R. Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints. Biosystems. 2015;136:3–10. doi: 10.1016/j.biosystems.2015.06.008 PubMed DOI
Kostal L, Kobayashi R. Critical size of neural population for reliable information transmission. Phys Rev E (Rapid Commun). 2019;100(1):050401(R). PubMed
Gur M, Beylin A, Snodderly DM. Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys. J Neurosci. 1997;17(8):2914–2920. doi: 10.1523/JNEUROSCI.17-08-02914.1997 PubMed DOI PMC
Geisler WS, Albrecht DG. Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification. Vis Neurosci. 1997;14(5):897–919. doi: 10.1017/S0952523800011627 PubMed DOI
Uhlenbeck GE, Ornstein LS. On the Theory of the Brownian Motion. Phys Rev. 1930;36(5):823–841. doi: 10.1103/PhysRev.36.823 DOI
Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 2001;107(1):13–24. doi: 10.1016/s0306-4522(01)00344-x PubMed DOI PMC
Rajdl K, Lansky P. Stein’s neuronal model with pooled renewal input. Biol Cybern. 2015;109(3):389–399. doi: 10.1007/s00422-015-0650-x PubMed DOI
Stimberg M, Brette R, Goodman DF. Brian 2, an intuitive and efficient neural simulator. eLife. 2019;8. doi: 10.7554/eLife.47314 PubMed DOI PMC
Vetter P, Roth A, Häusser M. Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. J Neurophysiol. 2001;85(2):926–937. doi: 10.1152/jn.2001.85.2.926 PubMed DOI
Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W. Entropy and Information in Neural Spike Trains. Phys Rev Lett. 1998;80(1):197–200. doi: 10.1103/PhysRevLett.80.197 DOI
Panzeri S, Senatore R, Montemurro MA, Petersen RS. Correcting for the Sampling Bias Problem in Spike Train Information Measures. J Neurophysiol. 2007;98(3):1064–1072. doi: 10.1152/jn.00559.2007 PubMed DOI
Panzeri S, Treves A. Analytical estimates of limited sampling biases in different information measures. Network. 1996;7(1):87–107. doi: 10.1080/0954898X.1996.11978656 PubMed DOI
Paninski L. Estimation of Entropy and Mutual Information. Neural Comput. 2003;15(6):1191–1253. doi: 10.1162/089976603321780272 DOI
Nemenman I, Bialek W, de Ruyter van Steveninck R. Entropy and information in neural spike trains: Progress on the sampling problem. Phys Rev E. 2004;69(5):056111. doi: 10.1103/PhysRevE.69.056111 PubMed DOI