Shared input and recurrency in neural networks for metabolically efficient information transmission

. 2024 Feb ; 20 (2) : e1011896. [epub] 20240223

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38394341

Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.

Zobrazit více v PubMed

Barlow HB. Possible Principles Underlying the Transformations of Sensory Messages. In: Sensory Communication. The MIT Press; 1961. p. 217–234.

Attwell D, Laughlin SB. An Energy Budget for Signaling in the Grey Matter of the Brain. J Cereb Blood Flow Metab. 2001;21(10):1133–1145. doi: 10.1097/00004647-200110000-00001 PubMed DOI

Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron. 2012;75(5):762–777. doi: 10.1016/j.neuron.2012.08.019 PubMed DOI

Levy WB, Baxter RA. Energy Efficient Neural Codes. Neural Comput. 1996;8(3):531–543. doi: 10.1162/neco.1996.8.3.531 PubMed DOI

Balasubramanian V, Kimber D, Berry MJ II. Metabolically Efficient Information Processing. Neural Comput. 2001;13(4):799–815. doi: 10.1162/089976601300014358 PubMed DOI

Laughlin S. Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol. 2001;11(4):475–480. doi: 10.1016/S0959-4388(00)00237-3 PubMed DOI

Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol. 2008;211(11):1792–1804. doi: 10.1242/jeb.017574 PubMed DOI

Yu L, Yu Y. Energy-efficient neural information processing in individual neurons and neuronal networks. J Neurosci Res. 2017;95(11):2253–2266. doi: 10.1002/jnr.24131 PubMed DOI

Sengupta B, Laughlin SB, Niven JE. Balanced Excitatory and Inhibitory Synaptic Currents Promote Efficient Coding and Metabolic Efficiency. PLoS Comput Biol. 2013;9(10):e1003263. doi: 10.1371/journal.pcbi.1003263 PubMed DOI PMC

Barta T, Kostal L. The effect of inhibition on rate code efficiency indicators. PLoS Comput Biol. 2019;15(12):e1007545. doi: 10.1371/journal.pcbi.1007545 PubMed DOI PMC

Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y. Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons. Neuron. 2003;37(4):663–680. doi: 10.1016/S0896-6273(03)00064-3 PubMed DOI

Brunel N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. J Comput Neurosci. 2000;8:183–208. doi: 10.1023/A:1008925309027 PubMed DOI

Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, et al.. The Asynchronous State in Cortical Circuits. Science. 2010;327(5965):587–590. doi: 10.1126/science.1179850 PubMed DOI PMC

Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of Neural-Network Activity by Inhibitory Feedback. PLoS Comp Biol. 2012;8(8):e1002596. doi: 10.1371/journal.pcbi.1002596 PubMed DOI PMC

Bernacchia A, Wang XJ. Decorrelation by Recurrent Inhibition in Heterogeneous Neural Circuits. Neural Comput. 2013;25(7):1732–1767. doi: 10.1162/NECO_a_00451 PubMed DOI PMC

Abbott LF, Dayan P. The Effect of Correlated Variability on the Accuracy of a Population Code. Neural Comput. 1999;11(1):91–101. doi: 10.1162/089976699300016827 PubMed DOI

Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci. 2006;7(5):358–366. doi: 10.1038/nrn1888 PubMed DOI

Panzeri S, Moroni M, Safaai H, Harvey CD. The structures and functions of correlations in neural population codes. Nat Rev Neurosci. 2022;23(9):551–567. doi: 10.1038/s41583-022-00606-4 PubMed DOI

Shadlen MN, Newsome WT. The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding. J Neurosci. 1998;18(10):3870–3896. doi: 10.1523/JNEUROSCI.18-10-03870.1998 PubMed DOI PMC

Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correlations. Nature Neuroscience. 2014;17(10):1410–1417. doi: 10.1038/nn.3807 PubMed DOI PMC

Blahut R. Computation of channel capacity and rate-distortion functions. IEEE Trans Inf Theory. 1972;18(4):460–473. doi: 10.1109/TIT.1972.1054855 DOI

Jimbo M, Kunisawa K. An iteration method for calculating the relative capacity. Information and Control. 1979;43(2):216–223. doi: 10.1016/S0019-9958(79)90719-8 DOI

Suksompong P, Berger T. Capacity Analysis for Integrate-and-Fire Neurons With Descending Action Potential Thresholds. IEEE Trans Inf Theory. 2010;56(2):838–851. doi: 10.1109/TIT.2009.2037042 DOI

Kostal L, Lansky P. Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons. Biosystems. 2013;112(3):265–275. doi: 10.1016/j.biosystems.2013.03.019 PubMed DOI

Kostal L, Lansky P, McDonnell MD. Metabolic cost of neuronal information in an empirical stimulus-response model. Biol Cybern. 2013;107(3):355–365. doi: 10.1007/s00422-013-0554-6 PubMed DOI

Stemmler M. A single spike suffices: the simplest form of stochastic resonance in model neurons. Network. 1996;7(4):687–716. doi: 10.1088/0954-898X_7_4_005 DOI

Greenwood PE, Lansky P. Optimum signal in a simple neuronal model with signal-dependent noise. Biol Cybern. 2005;92(3):199–205. doi: 10.1007/s00422-005-0545-3 PubMed DOI

Meyer HS, Wimmer VC, Oberlaender M, de Kock CPJ, Sakmann B, Helmstaedter M. Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex. Cereb Cortex. 2010;20(10):2277–2286. doi: 10.1093/cercor/bhq067 PubMed DOI PMC

Bernardi D, Doron G, Brecht M, Lindner B. A network model of the barrel cortex combined with a differentiator detector reproduces features of the behavioral response to single-neuron stimulation. PLOS Comput Biol. 2021;17(2). doi: 10.1371/journal.pcbi.1007831 PubMed DOI PMC

Hennequin G, Vogels T, Gerstner W. Optimal Control of Transient Dynamics in Balanced Networks Supports Generation of Complex Movements. Neuron. 2014;82(6):1394–1406. doi: 10.1016/j.neuron.2014.04.045 PubMed DOI PMC

Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cereb Cortex. 2014;24(3):785–806. doi: 10.1093/cercor/bhs358 PubMed DOI PMC

Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, et al.. Reconstructing neuronal circuitry from parallel spike trains. Nat Commun. 2019;10(1):4468. doi: 10.1038/s41467-019-12225-2 PubMed DOI PMC

Barta T, Kostal L. Regular spiking in high-conductance states: The essential role of inhibition. Phys Rev E. 2021;103(2):022408. doi: 10.1103/PhysRevE.103.022408 PubMed DOI

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 2020;17(3):261–272. doi: 10.1038/s41592-019-0686-2 PubMed DOI PMC

Padamsey Z, Katsanevaki D, Dupuy N, Rochefort NL. Neocortex saves energy by reducing coding precision during food scarcity. Neuron. 2022;110(2):280–296. doi: 10.1016/j.neuron.2021.10.024 PubMed DOI PMC

Kobayashi R, Tsubo Y, Shinomoto S. Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci. 2009;3:9. doi: 10.3389/neuro.10.009.2009 PubMed DOI PMC

Zerlaut Y, Chemla S, Chavane F, Destexhe A. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. J Comput Neurosci. 2017;44(1):45–61. doi: 10.1007/s10827-017-0668-2 PubMed DOI

Laughlin S. A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch [C]. 1981;36(9-10):910–912. doi: 10.1515/znc-1981-9-1040 PubMed DOI

Kostal L, Lansky P, Rospars JP. Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comput Biol. 2008;4:e1000053. doi: 10.1371/journal.pcbi.1000053 PubMed DOI PMC

Treves A, Panzeri S, Rolls ET, Booth M, Wakeman EA. Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Comput. 1999;11(3):601–632. doi: 10.1162/089976699300016593 PubMed DOI

de Polavieja GG. Errors Drive the Evolution of Biological Signalling to Costly Codes. J Theor Biol. 2002;214(4):657–664. doi: 10.1006/jtbi.2001.2498 PubMed DOI

de Polavieja GG. Reliable biological communication with realistic constraints. Phys Rev E. 2004;70(6). doi: 10.1103/PhysRevE.70.061910 PubMed DOI

Kostal L, Kobayashi R. Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints. Biosystems. 2015;136:3–10. doi: 10.1016/j.biosystems.2015.06.008 PubMed DOI

Kostal L, Kobayashi R. Critical size of neural population for reliable information transmission. Phys Rev E (Rapid Commun). 2019;100(1):050401(R). PubMed

Gur M, Beylin A, Snodderly DM. Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys. J Neurosci. 1997;17(8):2914–2920. doi: 10.1523/JNEUROSCI.17-08-02914.1997 PubMed DOI PMC

Geisler WS, Albrecht DG. Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification. Vis Neurosci. 1997;14(5):897–919. doi: 10.1017/S0952523800011627 PubMed DOI

Uhlenbeck GE, Ornstein LS. On the Theory of the Brownian Motion. Phys Rev. 1930;36(5):823–841. doi: 10.1103/PhysRev.36.823 DOI

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 2001;107(1):13–24. doi: 10.1016/s0306-4522(01)00344-x PubMed DOI PMC

Rajdl K, Lansky P. Stein’s neuronal model with pooled renewal input. Biol Cybern. 2015;109(3):389–399. doi: 10.1007/s00422-015-0650-x PubMed DOI

Stimberg M, Brette R, Goodman DF. Brian 2, an intuitive and efficient neural simulator. eLife. 2019;8. doi: 10.7554/eLife.47314 PubMed DOI PMC

Vetter P, Roth A, Häusser M. Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. J Neurophysiol. 2001;85(2):926–937. doi: 10.1152/jn.2001.85.2.926 PubMed DOI

Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W. Entropy and Information in Neural Spike Trains. Phys Rev Lett. 1998;80(1):197–200. doi: 10.1103/PhysRevLett.80.197 DOI

Panzeri S, Senatore R, Montemurro MA, Petersen RS. Correcting for the Sampling Bias Problem in Spike Train Information Measures. J Neurophysiol. 2007;98(3):1064–1072. doi: 10.1152/jn.00559.2007 PubMed DOI

Panzeri S, Treves A. Analytical estimates of limited sampling biases in different information measures. Network. 1996;7(1):87–107. doi: 10.1080/0954898X.1996.11978656 PubMed DOI

Paninski L. Estimation of Entropy and Mutual Information. Neural Comput. 2003;15(6):1191–1253. doi: 10.1162/089976603321780272 DOI

Nemenman I, Bialek W, de Ruyter van Steveninck R. Entropy and information in neural spike trains: Progress on the sampling problem. Phys Rev E. 2004;69(5):056111. doi: 10.1103/PhysRevE.69.056111 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace