Quantifying pH-induced changes in plasma strong ion difference during experimental acidosis: clinical implications for base excess interpretation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38420681
PubMed Central
PMC11305652
DOI
10.1152/japplphysiol.00917.2023
Knihovny.cz E-zdroje
- Klíčová slova
- albumin, hemoglobin, noncarbonic whole blood buffer value, plasma strong ion difference, whole blood base excess,
- MeSH
- acidobazická rovnováha MeSH
- acidóza * MeSH
- albuminy škodlivé účinky MeSH
- anemie * MeSH
- elektrolyty MeSH
- hemoglobiny MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- oxid uhličitý MeSH
- poruchy acidobazické rovnováhy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- albuminy MeSH
- elektrolyty MeSH
- hemoglobiny MeSH
- oxid uhličitý MeSH
It is commonly assumed that changes in plasma strong ion difference (SID) result in equal changes in whole blood base excess (BE). However, at varying pH, albumin ionic-binding and transerythrocyte shifts alter the SID of plasma without affecting that of whole blood (SIDwb), i.e., the BE. We hypothesize that, during acidosis, 1) an expected plasma SID (SIDexp) reflecting electrolytes redistribution can be predicted from albumin and hemoglobin's charges, and 2) only deviations in SID from SIDexp reflect changes in SIDwb, and therefore, BE. We equilibrated whole blood of 18 healthy subjects (albumin = 4.8 ± 0.2 g/dL, hemoglobin = 14.2 ± 0.9 g/dL), 18 septic patients with hypoalbuminemia and anemia (albumin = 3.1 ± 0.5 g/dL, hemoglobin = 10.4 ± 0.8 g/dL), and 10 healthy subjects after in vitro-induced isolated anemia (albumin = 5.0 ± 0.2 g/dL, hemoglobin = 7.0 ± 0.9 g/dL) with varying CO2 concentrations (2-20%). Plasma SID increased by 12.7 ± 2.1, 9.3 ± 1.7, and 7.8 ± 1.6 mEq/L, respectively (P < 0.01) and its agreement (bias[limits of agreement]) with SIDexp was strong: 0.5[-1.9; 2.8], 0.9[-0.9; 2.6], and 0.3[-1.4; 2.1] mEq/L, respectively. Separately, we added 7.5 or 15 mEq/L of lactic or hydrochloric acid to whole blood of 10 healthy subjects obtaining BE of -6.6 ± 1.7, -13.4 ± 2.2, -6.8 ± 1.8, and -13.6 ± 2.1 mEq/L, respectively. The agreement between ΔBE and ΔSID was weak (2.6[-1.1; 6.3] mEq/L), worsening with varying CO2 (2-20%): 6.3[-2.7; 15.2] mEq/L. Conversely, ΔSIDwb (the deviation of SID from SIDexp) agreed strongly with ΔBE at both constant and varying CO2: -0.1[-2.0; 1.7], and -0.5[-2.4; 1.5] mEq/L, respectively. We conclude that BE reflects only changes in plasma SID that are not expected from electrolytes redistribution, the latter being predictable from albumin and hemoglobin's charges.NEW & NOTEWORTHY This paper challenges the assumed equivalence between changes in plasma strong ion difference (SID) and whole blood base excess (BE) during in vitro acidosis. We highlight that redistribution of strong ions, in the form of albumin ionic-binding and transerythrocyte shifts, alters SID without affecting BE. We demonstrate that these expected SID alterations are predictable from albumin and hemoglobin's charges, or from the noncarbonic whole blood buffer value, allowing a better interpretation of SID and BE during in vitro acidosis.
Centre for Human and Applied Physiological Sciences King's College London London United Kingdom
Department of Anesthesia and Critical Care AOU S Luigi Gonzaga Turin Italy
Department of Anesthesia and Intensive Care Medicine Niguarda Ca' Granda Milan Italy
Department of Anesthesiology University Medical Center Göttingen Göttingen Germany
Department of Medicine and Surgery University of Milano Bicocca Monza Italy
Department of Oncology University of Turin Turin Italy
Department of pathophysiology and Transplantation University of Milan Milan Italy
Zobrazit více v PubMed
Morgan TJ, Clark C, Endre ZH. Accuracy of base excess—an in vitro evaluation of the Van Slyke equation. Crit Care Med 28: 2932–2936, 2000. doi:10.1097/00003246-200008000-00041. PubMed DOI
Andersen OS. The pH-log pCO2 acid-base nomogram revised. Scand J Clin Lab Invest 14: 598–604, 1962. doi:10.1080/00365516209051290. PubMed DOI
Singer RB, Hastings AB. An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 27: 223–242, 1948. doi:10.1097/00005792-194805000-00003. PubMed DOI
Berend K. Diagnostic use of base excess in acid–base disorders. N Engl J Med 378: 1419–1428, 2018. doi:10.1056/NEJMra1711860. PubMed DOI
Story DA. Acid–base analysis in the operating room: a bedside Stewart approach. Anesthesiology 139: 860–867, 2023. doi:10.1097/ALN.0000000000004712. PubMed DOI
Gilfix BM, Bique M, Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8: 187–197, 1993. doi:10.1016/0883-9441(93)90001-2. PubMed DOI
Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27: 1577–1581, 1999. doi:10.1097/00003246-199908000-00030. PubMed DOI
Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med 162: 2246–2251, 2000. doi:10.1164/ajrccm.162.6.9904099. PubMed DOI
Story DA, Morimatsu H, Bellomo R. Strong ions, weak acids and base excess: a simplified Fencl–Stewart approach to clinical acid–base disorders. Br J Anaesth 92: 54–60, 2004. doi:10.1093/bja/aeh018. PubMed DOI
Morgan TJ. The Stewart approach—one clinician’s perspective. Clin Biochem Rev 30: 41–54, 2009. PubMed PMC
Wolf MB, DeLand EC. A comprehensive, computer-model-based approach for diagnosis and treatment of complex acid–base disorders in critically-ill patients. J Clin Monit Comput 25: 353–364, 2011. doi:10.1007/s10877-011-9320-2. PubMed DOI
Stewart PA. How to Understand Acid-Based Balance: A Quantitative Acid-Base Primer for Biology and Medicine. New York: Elsevier, 1981.
Agrafiotis M. Strong ion reserve: a viewpoint on acid base equilibria and buffering. Eur J Appl Physiol 111: 1951–1954, 2011. [Erratum in Eur J Appl Physiol 111: 1955, 2011]. doi:10.1007/s00421-010-1803-1. PubMed DOI
Fogh-Andersen N, Bjerrum PJ, Siggaard-Andersen O. Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH. Clin Chem 39: 48–52, 1993. doi:10.1093/clinchem/39.1.48. PubMed DOI
Leeuwen AM. Net cation equivalency (‘base binding power’) of the plasma proteins. Acta Med Scand 176, Suppl 422: 1+, 1964. PubMed
Funder J, Wieth JO. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiologica Scandinavica 68: 234–245, 1966. doi:10.1111/j.1748-1716.1966.tb03423.x. DOI
Dalmark M. Chloride and water distribution in human red cells. J Physiol 250: 65–84, 1975. doi:10.1113/jphysiol.1975.sp011043. PubMed DOI PMC
Langer T, Brusatori S, Carlesso E, Zadek F, Brambilla P, Ferraris Fusarini C, Duska F, Caironi P, Gattinoni L, Fasano M, Lualdi M, Alberio T, Zanella A, Pesenti A, Grasselli G. Low noncarbonic buffer power amplifies acute respiratory acid-base disorders in patients with sepsis: an in vitro study. J Appl Physiol (1985) 131: 464–473, 2021. doi:10.1152/japplphysiol.00787.2020. PubMed DOI
Langer T, Scotti E, Carlesso E, Protti A, Zani L, Chierichetti M, Caironi P, Gattinoni L. Electrolyte shifts across the artificial lung in patients on extracorporeal membrane oxygenation: Interdependence between partial pressure of carbon dioxide and strong ion difference. J Crit Care 30: 2–6, 2015. doi:10.1016/j.jcrc.2014.09.013. PubMed DOI
Zadek F, Danieli A, Brusatori S, Giosa L, Krbec M, Antolini L, Fumagalli R, Langer T. Combining the physical–chemical approach with standard base excess to understand the compensation of respiratory acid–base derangements: an individual participant meta-analysis approach to data from multiple canine and human experiments. Anesthesiology 140: 116–125, 2024. doi:10.1097/ALN.0000000000004751. PubMed DOI
Böning D, Klarholz C, Himmelsbach B, Hütler M, Maassen N. Causes of differences in exercise-induced changes of base excess and blood lactate. Eur J Appl Physiol 99: 163–171, 2007. doi:10.1007/s00421-006-0328-0. PubMed DOI
Peters JP, Tulin M, Danowski TS, Hald PM. The distribution and movements of carbon dioxide and chloride between cells and serum of oxygenated human blood. Am J Physiol 148: 568–581, 1947. doi:10.1152/ajplegacy.1947.148.3.568. PubMed DOI
Madias NE, Homer SM, Johns CA, Cohen JJ. Hypochloremia as a consequence of anion gap metabolic acidosis. J Lab Clin Med 104: 15–23, 1984. doi:10.5555/uri:pii:0022214384901276. PubMed DOI
Wooten EW. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol (1985) 95: 2333–2344, 2003. [Erratum in J Appl Physiol 96: 1577–1578, 2004]. doi:10.1152/japplphysiol.00560.2003. PubMed DOI
Watson PD. Modeling the effects of proteins on pH in plasma. J Appl Physiol (1985) 86: 1421–1427, 1999. doi:10.1152/jappl.1999.86.4.1421. PubMed DOI
Siggaard-Andersen O. The Acid-Base Status of the Blood. Baltimore, MD: Williams & Wilkins Company, 1964.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30: 70–82, 2021. doi:10.1002/pro.3943. PubMed DOI PMC
Krbec M, Waldauf P, Zadek F, Brusatori S, Zanella A, Duška F, Langer T. Non-carbonic buffer power of whole blood is increased in experimental metabolic acidosis: an in-vitro study. Front Physiol 13: 1009378, 2022. doi:10.3389/fphys.2022.1009378. PubMed DOI PMC
Figge J, Mydosh T, Fencl V. Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120: 713–719, 1992. PubMed
Tanford C, , Nozaki Y. Titration of the histidyl and α-amino groups of hemoglobin. J Biol Chem 241: 2832–2839, 1966. doi:10.1016/S0021-9258(18)96539-7. PubMed DOI
Reeves RB. Temperature-induced changes in blood acid-base status: pH and PCO2 in a binary buffer. J Appl Physiol 40: 752–761, 1976. doi:10.1152/jappl.1976.40.5.752. PubMed DOI
Lang W, Zander R. The accuracy of calculated base excess in blood. Clin Chem Lab Med 40: 404–410, 2002. doi:10.1515/CCLM.2002.065. PubMed DOI
Clinical and Laboratory Standards Institute. C46-A2: Blood Gas and pH Analysis and Related Measurements; Approved Guideline (2nd ed.). Wayne, PA: CLSI, 2009.
Story DA, Poustie S, Bellomo R. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap. Anaesthesia 57: 1109–1114, 2002. doi:10.1046/j.1365-2044.2002.02782_2.x. PubMed DOI
Staempfli HR, Constable PD. Experimental determination of net protein charge and A(tot) and K(a) of nonvolatile buffers in human plasma. J Appl Physiol (1985) 95: 620–630, 2003. doi:10.1152/japplphysiol.00100.2003. PubMed DOI
Apple FS, Koch DD, Graves S, Ladenson JH. Relationship between direct-potentiometric and flame-photometric measurement of sodium in blood. Clin Chem 28: 1931–1935, 1982. doi:10.1093/clinchem/28.9.1931. PubMed DOI
Van Slyke DD, Wu H, McLean FC. Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood. J Biol Chem 56: 765–849, 1923. doi:10.1016/S0021-9258(18)85558-2. DOI
Reeves RB. An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236, 1972. doi:10.1016/0034-5687(72)90030-8. PubMed DOI
Reeves RB. Temperature-induced changes in blood acid-base status: Donnan rCl and red cell volume. J Appl Physiol 40: 762–767, 1976. doi:10.1152/jappl.1976.40.5.762. PubMed DOI
Böning D, Maassen N. Blood osmolality in vitro: dependence on PCO2, lactic acid concentration, and O2 saturation. J Appl Physiol Respir Environ Exerc Physiol 54: 118–122, 1983. doi:10.1152/jappl.1983.54.1.118. PubMed DOI
Van Slyke DD. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J Biol Chem 52: 525–570, 1922. doi:10.1016/S0021-9258(18)85845-8. DOI
Böning D, Klarholz C, Himmelsbach B, Hütler M, Maassen N. Extracellular bicarbonate and non-bicarbonate buffering against lactic acid during and after exercise. Eur J Appl Physiol 100: 457–467, 2007. doi:10.1007/s00421-007-0453-4. PubMed DOI
Böning D, Rojas J, Serrato M, Reyes O, Coy L, Mora M. Extracellular pH defense against lactic acid in untrained and trained altitude residents. Eur J Appl Physiol 103: 127–137, 2008. doi:10.1007/s00421-008-0675-0. PubMed DOI
Fitzsimons E, Sendroy J. Distribution of electrolytes in human blood. J Biol Chem 236: 1595–1601, 1961. doi:10.1016/S0021-9258(18)64218-8. DOI
Johnson RE, Edwards HT, Dill DB, Wilson JW. Blood as a physicochemical system. XIII. The distribution of lactate. J Biol Chem 157: 461–473, 1945. doi:10.1016/S0021-9258(18)51082-6. DOI
Story DA, Poustie S, Bellomo R. Comparison of three methods to estimate plasma bicarbonate in critically ill patients: Henderson-Hasselbalch, enzymatic, and strong-ion-gap. Anaesth Intensive Care 29: 585–590, 2001. doi:10.1177/0310057X0102900603. PubMed DOI
Deuticke B. Anion permeability of the red blood cell. Naturwissenschaften 57: 172–179, 1970. doi:10.1007/BF00592968. PubMed DOI
Schlichtig R, Grogono AW, Severinghaus JW. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med 26: 1173–1179, 1998. doi:10.1097/00003246-199807000-00015. PubMed DOI