• This record comes from PubMed

Differential requirements for Smarca5 expression during hematopoietic stem cell commitment

. 2024 Feb 29 ; 7 (1) : 244. [epub] 20240229

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
24-10435S, 24-10353S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
NU21-08-00312, NU22-05-00374 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
LX22NPO5102, SVV 260637, UNCE/MED/016, COOPERATIO Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_013/0001789, CZ.02.1.01/0.0/0.0/18_046/0015861 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Links

PubMed 38424235
PubMed Central PMC10904812
DOI 10.1038/s42003-024-05917-z
PII: 10.1038/s42003-024-05917-z
Knihovny.cz E-resources

The formation of hematopoietic cells relies on the chromatin remodeling activities of ISWI ATPase SMARCA5 (SNF2H) and its complexes. The Smarca5 null and conditional alleles have been used to study its functions in embryonic and organ development in mice. These mouse model phenotypes vary from embryonic lethality of constitutive knockout to less severe phenotypes observed in tissue-specific Smarca5 deletions, e.g., in the hematopoietic system. Here we show that, in a gene dosage-dependent manner, the hypomorphic allele of SMARCA5 (S5tg) can rescue not only the developmental arrest in hematopoiesis in the hCD2iCre model but also the lethal phenotypes associated with constitutive Smarca5 deletion or Vav1iCre-driven conditional knockout in hematopoietic progenitor cells. Interestingly, the latter model also provided evidence for the role of SMARCA5 expression level in hematopoietic stem cells, as the Vav1iCre S5tg animals accumulate stem and progenitor cells. Furthermore, their hematopoietic stem cells exhibited impaired lymphoid lineage entry and differentiation. This observation contrasts with the myeloid lineage which is developing without significant disturbances. Our findings indicate that animals with low expression of SMARCA5 exhibit normal embryonic development with altered lymphoid entry within the hematopoietic stem cell compartment.

See more in PubMed

de la Serna IL, Ohkawa Y, Imbalzano AN. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat. Rev. Genet. 2006;7:461–473. doi: 10.1038/nrg1882. PubMed DOI

Zhou CY, Johnson SL, Gamarra NI, Narlikar GJ. Mechanisms of ATP-dependent chromatin remodeling motors. Annu. Rev. Biophys. 2016;45:153–181. doi: 10.1146/annurev-biophys-051013-022819. PubMed DOI PMC

Erdel F, Rippe K. Chromatin remodelling in mammalian cells by ISWI-type complexes-where, when and why? FEBS J. 2011;278:3608–3618. doi: 10.1111/j.1742-4658.2011.08282.x. PubMed DOI

Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154:490–503. doi: 10.1016/j.cell.2013.07.011. PubMed DOI PMC

Stopka T, Skoultchi AI. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl. Acad. Sci. USA. 2003;100:14097–14102. doi: 10.1073/pnas.2336105100. PubMed DOI PMC

Barisic D, Stadler MB, Iurlaro M, Schubeler D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 2019;569:136–140. doi: 10.1038/s41586-019-1115-5. PubMed DOI PMC

Dluhosova M, et al. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5. PLoS One. 2014;9:e87448. doi: 10.1371/journal.pone.0087448. PubMed DOI PMC

Ding Y, et al. Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood. 2021;137:190–202. doi: 10.1182/blood.2020005219. PubMed DOI PMC

Kokavec J, et al. The ISWI ATPase Smarca5 (Snf2h) is required for proliferation and differentiation of hematopoietic stem and progenitor cells. Stem Cells. 2017;35:1614–1623. doi: 10.1002/stem.2604. PubMed DOI PMC

Zikmund T, et al. ISWI ATPase Smarca5 regulates differentiation of thymocytes undergoing beta-selection. J. Immunol. 2019;202:3434–3446. doi: 10.4049/jimmunol.1801684. PubMed DOI PMC

Oppikofer M, et al. Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep. 2017;18:1697–1706. doi: 10.15252/embr.201744011. PubMed DOI PMC

Siamishi I, et al. Lymphocyte-specific function of the DNA polymerase epsilon subunit pole3 revealed by neomorphic alleles. Cell Rep. 2020;31:107756. doi: 10.1016/j.celrep.2020.107756. PubMed DOI

Dowdle JA, et al. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet. 2013;9:e1003945. doi: 10.1371/journal.pgen.1003945. PubMed DOI PMC

Koscielny G, et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014;42:D802–D809. doi: 10.1093/nar/gkt977. PubMed DOI PMC

Landry J, et al. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet. 2008;4:e1000241. doi: 10.1371/journal.pgen.1000241. PubMed DOI PMC

Dicipulo R, et al. Cecr2 mutant mice as a model for human cat eye syndrome. Sci. Rep. 2021;11:3111. doi: 10.1038/s41598-021-82556-y. PubMed DOI PMC

Emanuele MJ, et al. Global identification of modular cullin-RING ligase substrates. Cell. 2011;147:459–474. doi: 10.1016/j.cell.2011.09.019. PubMed DOI PMC

Han L, et al. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia. 2019;33:2291–2305. doi: 10.1038/s41375-019-0438-4. PubMed DOI PMC

Chi TH, et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature. 2002;418:195–199. doi: 10.1038/nature00876. PubMed DOI

Chi TH, et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity. 2003;19:169–182. doi: 10.1016/S1074-7613(03)00199-7. PubMed DOI

Williams CJ, et al. The chromatin remodeler Mi-2beta is required for CD4 expression and T cell development. Immunity. 2004;20:719–733. doi: 10.1016/j.immuni.2004.05.005. PubMed DOI

Janeckova L, et al. Wnt signaling inhibition deprives small intestinal stem cells of clonogenic capacity. Genesis. 2016;54:101–114. doi: 10.1002/dvg.22922. PubMed DOI PMC

Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1993;90:8424–8428. doi: 10.1073/pnas.90.18.8424. PubMed DOI PMC

de Boer J, et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 2003;33:314–325. doi: 10.1002/immu.200310005. PubMed DOI

Birling MC, Dierich A, Jacquot S, Herault Y, Pavlovic G. Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis. 2012;50:482–489. doi: 10.1002/dvg.20826. PubMed DOI

Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI

Hebert AS, et al. The one hour yeast proteome. Mol. Cell Proteomics. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics13, 2513-2526 (2014). PubMed PMC

Zauber, H., Kirchner, M. & Selbach, M. Picky: a simple online PRM and SRM method designer for targeted proteomics. Nat. Methods15, 156–157 (2018). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...