Analytical Methods for Brassinosteroid Analysis: Recent Advances and Applications
Language English Country Japan Media print
Document type Journal Article, Review
Grant support
862858
The EU Horizon-2020 project ADAPT
PubMed
38619131
PubMed Central
PMC11558546
DOI
10.1093/pcp/pcae038
PII: 7645828
Knihovny.cz E-resources
- Keywords
- Brassinosteroids, Chemical synthesis, Chromatography, Immunoassays, Mass spectrometry, Quantification,
- MeSH
- Brassinosteroids * metabolism analysis MeSH
- Chromatography, Liquid methods MeSH
- Immunoassay methods MeSH
- Gas Chromatography-Mass Spectrometry methods MeSH
- Plant Growth Regulators metabolism analysis MeSH
- Plants metabolism chemistry MeSH
- Tandem Mass Spectrometry methods MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Brassinosteroids * MeSH
- Plant Growth Regulators MeSH
Brassinosteroids (BRs) are plant steroidal hormones that play crucial roles in plant growth and development. Accurate quantification of BRs in plant tissues is essential for understanding their biological functions. This study presents a comprehensive overview of the latest methods used for the quantification of BRs in plants. We discuss the principles, advantages and limitations of various analytical techniques, including immunoassays, gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry that are used for the detection and quantification of BRs from complex plant matrixes. We also explore the use of isotopically labeled internal standards to improve the accuracy and reliability of BR quantification.
See more in PubMed
Abe H., Takatsuto S., Nakayama M. and Yokota T. (1995) 28-Homotyphasterol, a new natural brassinosteroid from rice (Oryza sativa L.) Bran. Biosci. Biotechnol., Biochem. 59: 176–178.
Allevi P., Anastasia M., Cerana R., Ciuffreda P. and Lado P. (1988) 24-Epibrassinolide uptake in growing maize root segments evaluated by multiple-selected ion monitoring. Phytochemistry 27: 1309–1313.
An N., Zhu Q.F., Yu L., Chen Y.T., Chen S.L. and Feng Y.Q. (2020) Derivatization assisted LC-p-MRM-MS with high CID voltage for rapid analysis of brassinosteroids. Talanta 217: 121058. PubMed
Antonchick A.P., Schneider B., Zhabinskii V.N. and Khripach V.A. (2004) Synthesis of [26,27-2H6]brassinosteroids from 23,24-bisnorcholenic acid methyl ester. Steroids 69: 617–628. PubMed
Bajguz A. (2011) Brassinosteroids—occurrence and chemical structures in plants. In Brassinosteroids: A Class of Plant Hormone. Edited by Hayat, S. and Ahmad, A. pp. 375–395. Springer, London.
Bajguz A. and Tretyn A. (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62: 1027–1046. PubMed
Chen M., wang R., Zhu Y., Liu M., Zhu F. and Xiao J. (2018) 4-Mercaptophenylboronic acid-modified spirally-curved mesoporous silica nanofibers coupled with ultra performance liquid chromatography–mass spectrometry for determination of brassinosteroids in plants. Food Chem. 263: 51–58. PubMed
Deng T., Wu D., Duan C. and Guan Y. (2016) Ultrasensitive quantification of endogenous brassinosteroids in milligram fresh plant with a quaternary ammonium derivatization reagent by pipette-tip solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spektrometry. J. Chromatogr. A 1456: 105–111. PubMed
Deng Z., Zhang X., Tang W., Oses-Prieto J.A., Suzuki N., Gendron J.M., et al. (2007) A proteomics study of brassinosteroid response in Arabidopsis. Mol. Cell. Proteom. 6: 2058–2071. PubMed PMC
Ding J., Mao L.J., Guo N., Feng Y.Q. and Feng Y.-Q. (2016) Determination of endogenous brassinosteroids using sequential magnetic solid phase extraction followed by in situ derivatization/desorption method coupled with liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1446: 103–113. PubMed
Ding J, Wu J, Liu J, Yuan B and Feng Y. (2014) Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization. Plant Methods. 10: 39 PubMed PMC
Fujioka S., Noguchi T., Yokota T., Takatsuto S. and Yoshil S. (1998) Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48: 595–599. PubMed
Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D. Jr., et al. (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica Napus pollen. Nature 281: 216–217.
Horgen P.A., Nakagawa C.H. and Irvin R.T. (1984) Production of monoclonal antibodies to a steroid plant growth regulator. Can. J. Biochem. Cell Biol 62: 715–721.
Hou Y., Qiu J., Wang Y., Li Z., Zhao J., Tong X., et al. (2017) A quantitative proteomic analysis of brassinosteroid-induced protein phosphorylation in rice (Oryza sativa L.). Front. Plant Sci. 8: 514. PubMed PMC
Huo S., Song X., Li L., Wang R., Wang X. and Ji W. (2021) Boronic acid-functionalized scholl-coupling mesoporous polymers for online solid-phase extraction of brassinosteroids from plant-derived foodstuffs. J. Agric. Food Chem. 69: 4883–4893. PubMed
Joo S.H., Jang M.S., Kim M.K., Lee J.E. and Kim S.K. (2015) Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry 111: 84–90. PubMed
Kanwar M.K., Bajguz A., Zhou J. and Bhardway R. (2017) Analysis of brassonosteroids in plants. J. Plant Growth Regul. 36: 1002–1030.
Khripach V.A., Khripach N.B., Zhabinskii V.N., Zhiburtovich Y.Y., Schneider B. and De Groot A. (2007) Synthesis of [7,7-2H2]epibrassinolide. J. Label. Compd. Radiopharm. 50: 1153–1158.
Khripach V.A., Litvinovskaya R.P., Raiman M.E., Drach S.V., Zhabinskii V.N., Sviridov O.V., et al. (2008a) Synthesis and immunochemical determination of 28-homobrassinosteroids. Vesti NAN Belarusi, ser khim navuk. 1: 47–58.
Khripach V.A., Zhabinskii V.N., Antonchick A.P., Konstantinova O.V. and Schneider B. (2002b) Synthesis of hexadeuterated 23-dehydroxybrassinosteroids. Steroids 67: 1101–1108. PubMed
Khripach V., Zhabinskii V., Antonchick A., Litvinovskaya R., Drach S., Sviridov O., et al. (2008b) A new type of modified brassinosteroids for enzyme-linked immunosorbent assay. Nat. Prod. Commun. 3: 735–748.
Khripach V.A., Zhabinskii V.N., Ermolovich Y.V. and Gulyakevich O.V. (2012b) Synthesis of [26-2H3]-campesterin and [26-2H3]-campestanol, deuterated analogs of biosynthetic precursors of 28C-brassinosteroids. Chem. Nat. Compd. 48: 606–609.
Khripach V.A., Zhabinskii V.N., Gulyakevich O.V. and Ermolovich Y.V. (2012a) Synthesis of [26-2H3]-6-deoxo-24-epicastasterone. Chem. Nat. Compd. 48: 601–605.
Khripach V.A., Zhabinskii V.N., Konstantinova O.V., Khripach N.B., Antonchick A.P. and Schneider B. (2002a) Synthesis of [26-2H3]brassinosteroids. Steroids 67: 587–595. PubMed
Khripach V.A., Zhabinskii V.N., Litvinovskaya R.P. (2011) Immunoassay of brassinosteroids. In Brassinosteroids: A Class of Plant Hormone. Edited by Hayat, S. and Ahmad, A. pp. 375–395. Springer, London.
Kim M.K., Jang M.S., Youn J.H., Son S.H., Lee J.E., Kim T.W., et al. (2015) Occurrence of phosphorylated castasterone in Arabidopsis thaliana and Lycopersicum esculentum. Physiol. Plant. 153: 58–67. PubMed
Kolbe A., Marquardt V. and Adam G. (1992) Synthesis of tritium labelled 24-epibrassinolide. J. Label. Compd. Radiopharm. 31: 801–805.
Kolbe A., Schneider B., Voigt B. and Adam G. (1998) Labelling of biogenetic brassinosteroid precursors. J. Label. Compd. Radiopharm. 41: 131.
Li Y., Deng T., Duan C., Ni L., Wang N. and Guan Y. (2019) Dispersive matrix solid-phase extraction method coupled with high performance liquid chromatography-tandem mass spectrometry for ultrasensitive quantification of endogenous brassinosteroids in minute plants and its application for geographical distribution study. J. Agric. Food Chem. 67: 3037–3045. PubMed
Liu X., Zhong Y., Li W., Li G., Jin N., Zhao X., et al. (2022) Development and comprehensive SPE-UHPLC-MS/MS analysis optimization, comparison, and evaluation of 2,4-epibrassinolide in different plant tissues. Molecules 27: 831. PubMed PMC
Li Q.F., Xiong M., Xu P., Huang L.C.H., Zhang C.Q., Liu Q.-Q., et al. (2016) Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Sci. Rep. 6: 34583. PubMed PMC
Luo X.T., Cai B.D., Yu L., Ding J. and Feng Y.Q. (2018) Sensitive determination of brassinosteroids by solid phase boronate affinity labeling coupled with liquid chromatography-tandem mass spektrometry. J. Chromatogr. A 1546: 10–17. PubMed
Manghwar H., Hussain A., Ali Q. and Liu F. (2022) Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 23: 1012. PubMed PMC
Marek A., Klepetarova B. and Elbert T. (2015) A facile method for steroid labeling by heavy isotopes of hydrogen. Tetrahedron 71: 4874–4882.
Marek A., Patil M.R., Klepetarova B., Kohout L. and Elbert T. (2012) A stereospecific pathway for the introduction of deuterium on the brassinosteroid skeleton by reductive dechlorination of chlorocarbonates. Tetrahedron Lett. 53: 2048–2050.
Mitchell J.W., Mandava N.B., Worley J.F., Plimmer J.R. and Smith M.V. (1970) Brassins: a new family of plant hormones from rape pollen. Nature 225: 1065–1066. PubMed
Oklestkova J., Tarkowská D., Eyer L., Elbert T., Marek A., Smržová Z., et al. (2017) Immunoaffinity chromatography combined with tandem mass spectrometry: a new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta 170: 432–440. PubMed
Patil M.R., Elbert T. and Keri R.S. (2015) Labelling of brassinosteroids by isotopes of hydrogen and carbon. RSC Adv. 5: 39726–39745.
Pradko A.G., Litvinovskaya R.P., Sauchuck A.L., Drach S.V., Baranovsky A.V., Zhabinskii V.N., et al. (2015) A new ELISA for quantification of brassinosteroids in plants. Steroids 97: 78–86. PubMed
Schmidt J., Yokota T., Spengler B. and Adam G. (1993) 28-Homoteasterone, a naturally occurring brassinosteroid from seeds of Raphanus sativus. Phytochemistry 34: 391–392.
Swaczynová J., Novák O., Hauserová E., Fuksová K., Šíša M., Kohout L., et al. (2007) New techniques for the estimation of naturally occurring brassinosteroids. J. Plant Growth Regul. 26: 1–14.
Takatsuto S. (1994) Brassinosteroids: distribution in plants, bioassays, and micro-analysis by gas chromatography-mass spectrometry. J. Chromatogr. A 658: 3–15.
Takatsuto S. and Ikekawa N. (1986a) Synthesis of [26, 28-2H6]brassinolide, [26, 28-2H6]castasterone, [26, 28-2H6]typhasterol, and [26, 28-2H6]teasterone. Chem. Pharm. Bull. 34: 1415–1418.
Takatsuto S. and Ikekawa N. (1986b) Synthesis of deuterio-labelled brassinosteroids, [26, 28-2H6]brassinolide, [26, 28-2H6]castasterone, [26, 28-2H6]typhasterol, and [26, 28-2H6]teasterone. Chem. Pharm. Bull. 34: 4045–4049.
Takatsuto S. and Ikekawa N. (1986c) Synthesis of [26,28-2H6]crinosterol, a synthetic intermediate of [26,28-2H6]brassinolide and [26,28-2H6]castasterone. J. Chem. Soc., Perkin Trans. 1: 591–593.
Takatsuto S., Kosuga N., Abe B., Noguchi T., Fujioka S. and Yokota T. (1999) Occurrence of potential brassinosteroid precursor steroids in seeds of wheat and foxtail millet. J. Plant Res. 112: 27–33.
Takatsuto S., Yokota T., Omote K., Gamoh K. and Takahashi N. (1989) Identification of brassinolide, castasterone and n orcastasterone (brassinone) in sunflower (Helianthus annuus L.) pollen. Agric. Biol. Chem. 53: 2177–2180.
Tarkowská D., Novák O., Floková K., Tarkowski P., Turečková V., Grúz J., et al. (2014) Quo vadis plant hormone analysis? Planta 240: 55–76. PubMed
Tarkowská D., Novák O., Oklestkova J. and Strnad M. (2016) The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal. Bioanal. Chem. 408: 6799–6812. PubMed
Taylor P., Spuck K., Smith P., Sasse J., Yokota T., and Griffiths P., et al. (1993) Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry Planta 189: 91–100
Vukašinović N., Wang Y., Vanhoutte I., Fendrych M., Guo B., Kvasnica M., et al. (2021) Local brassinosteroid biosynthesis enables optimal root growth. Nat. Plants 7: 619–632. PubMed
Wang X.Y., Xiong C.F., Ye T.T., Ding J. and Feng Y.O. (2020) Online polymer monolith microextraction with in-situ derivatization for sensitive detection of endogenous brassinosteroids by LC-MS. Microchem. J. 158: 105061.
Wierucka M. and Biziuk M. (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC-Trends Anal. Chem. 59: 50–58.
Wiseman J., Ifa D., Venter A. and Cooks R.G. (2008) Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat. Protoc. 3: 517–524. PubMed
Wu Q., Wu D., Shen Z., Duan C. and Guan Y. (2013) Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1297: 56–63. PubMed
Xin P., Li B., Yan J. and Ch Y. (2018) Pursuing extreme sensitivity for determination of endogenous brassinosteroids through direct fishing from plant matrices and eliminating most interferences with boronate affinity magnetic nanoparticles. Anal. Bioanal. Chem. 410: 1363–1374. PubMed
Xin P., Yan J., Fan J., Chu J. and Yan C. (2013a) An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol. 162: 2056–2066. PubMed PMC
Xin P., Yan J., Fan J., Chu J. and Yan C. (2013b) A dual role of boronate affinity in high-sensitivity detection of vicinal diol brassinosteroids from sub-gram plant tissues via UPLC-MS/MS. Analyst 138: 1342–1345. PubMed
Xin P., Yan J., Li B., Fang S., Fan J., Tian H., et al. (2016) A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissues. Front. Plant Sci. 7: 1786. PubMed PMC
Yan S., Bhawal R., Yin Z., Thannhauset T.W. and Zhang S. (2022) Recent advances in proteomics and metabolomics in plants. Mol. hortic. 2: 17. PubMed PMC
Yokota T., Nakayama M., Wakisaka T., Schmidt J. and Adam G. (1994) 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Biosci. Biotechnol. Biochem. 58: 1183–1185.
Yokota T., Watanabe S., Ogino Y., Yamaguchi I. and Takahashi N. (1990) Radioimmunoasay for brassinosteroids and its use for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J. Plant Growth Regul. 9: 151–159.
Yu L., Cai W.J., Ye T. and Feng Y.Q. (2019) A new boronic acid reagent for the simultaneous determination of C27-, C28-, and C29-brassinosteroids in plant tissues by chemical labeling-assisted liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 411: 1623–1632. PubMed
Yu L., Ye T., Bai Y.L., Cai W.J., Ding J., Yaun B.F., et al. (2018) Profiling of potential brassinosteroids in different tissues of rape flower by stable isotope labeling – liquid chromatography/mass spectrometry analysis. Anal. Chim. Acta 1037: 55–62. PubMed
Zhang C., Žukauskaitė A., Petřík I., Pěnčík A., Hönig M., Grúz J., et al. (2021) In situ characterisation of phytohormones from wounded Arabidopsis leaves using desorption electrospray ionisation mass spectrometry imaging. Analyst 146: 2653–2663. PubMed