Optic nerve involvement in patients with Lyme neuroborreliosis: an electrophysiological study

. 2024 Jun ; 148 (3) : 155-166. [epub] 20240415

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38622306
Odkazy

PubMed 38622306
DOI 10.1007/s10633-024-09975-w
PII: 10.1007/s10633-024-09975-w
Knihovny.cz E-zdroje

PURPOSE: The aim of this neurophysiological study was to retrospectively analyze visual evoked potentials (VEPs) acquired during an examination for diagnosing optic nerve involvement in patients with Lyme neuroborreliosis (LNB). Attention was focused on LNB patients with peripheral facial palsy (PFP) and optic nerve involvement. METHODS: A total of 241 Czech patients were classified as having probable/definite LNB (193/48); of these, 57 were younger than 40 years, with a median age of 26.3 years, and 184 were older than 40 years, with a median age of 58.8 years. All patients underwent pattern-reversal (PVEP) and motion-onset (MVEP) VEP examinations. RESULTS: Abnormal VEP results were observed in 150/241 patients and were noted more often in patients over 40 years (p = 0.008). Muscle/joint problems and paresthesia were observed to be significantly more common in patients older than 40 years (p = 0.002, p = 0.030), in contrast to headache and decreased visual acuity, which were seen more often in patients younger than 40 years (p = 0.001, p = 0.033). Peripheral facial palsy was diagnosed in 26/241 LNB patients. Among patients with PFP, VEP peak times above the laboratory limit was observed in 22 (84.6%) individuals. Monitoring of patients with PFP and pathological VEP showed that the adjustment of visual system function occurred in half of the patients in one to more years, in contrast to faster recovery from peripheral facial palsy within months in most patients. CONCLUSION: In LNB patients, VEP helps to increase sensitivity of an early diagnostic process.

Zobrazit více v PubMed

Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. Lancet 379:461–473. https://doi.org/10.1016/S0140-6736(11)60103-7 PubMed DOI

http:// www.szu.cz/uploads/documents/szu/infekce/tabulka_leden_prosinec_2019.pdf

Artsob H (1993) Western blot as a confirmatory test for Lyme disease. Can J Infect Dis 4:115–116. https://doi.org/10.1155/1993/796390 PubMed DOI PMC

Ryffel K, Péter O, Binet L, Dayer E (1998) Interpretation of immunoblots for Lyme borreliosis using a semiquantitative approach. Clin Microbiol Infect 4:205–212. https://doi.org/10.1111/j.1469-0691.1998.tb00670.x PubMed DOI

Stanek G, Fingerle V, Hunfeld KP et al (2011) Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect 17:69–79. https://doi.org/10.1111/j.1469-0691.2010.03175.x PubMed DOI

Reiber H, Lange P (1991) Quantification of virus-specific antibodies in cerebrospinal fluid and serum: sensitive and specific detection of antibody synthesis in brain. Clin Chem 37:1153–1160 PubMed DOI

Peltomaa M, Pyykkö I, Seppälä I, Viljanen M (2002) Lyme borreliosis and facial paralysis: a prospective analysis of risk factors and outcome. Am J Otolaryngol Head Neck Med Surg 23:125–132. https://doi.org/10.1053/ajot.2002.123434 DOI

Gilden DH (2004) Clinical practice. Bell’s Palsy. N Engl J Med 351:1323–1331. https://doi.org/10.1056/NEJMcp041120 PubMed DOI

Basić-Kes V, Dobrota VD, Cesarik M et al (2013) Peripheral facial weakness (Bell’s palsy). Acta Clin Croat 52:195–202 PubMed

Rojko T, Bogovič P, Lotrič-Furlan S et al (2019) Borrelia burgdorferi sensu lato infection in patients with peripheral facial palsy. Ticks Tick Borne Dis 10:398–406. https://doi.org/10.1016/j.ttbdis.2018.11.019 PubMed DOI

Kubová Z, Szanyi J, Langrová J et al (2006) Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis. J Clin Neurophysiol 23:416–420. https://doi.org/10.1097/01.wnp.0000218241.95542.4f PubMed DOI

Szanyi J, Kubova Z, Kremlacek J et al (2012) Pattern and motion-related visual-evoked potentials in neuroborreliosis: follow-up study. J Clin Neurophysiol 29:174–180. https://doi.org/10.1097/WNP.0b013e31824e1013 PubMed DOI

Mygland A, Ljøstad U, Fingerle V et al (2010) EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol 17:8–16 e1-4. https://doi.org/10.1111/j.1468-1331.2009.02862.x PubMed DOI

Krbková L, Kybicová K, Pícha D et al (2018) Guideline for the diagnosis and treatment of Lyme borreliosis. Klin Mikrobiol Infekc Lek 24:88–99 PubMed

Oschmann P, Dorndorf W, Hornig C et al (1998) Stages and syndromes of neuroborreliosis. J Neurol 245:262–272. https://doi.org/10.1007/s004150050216 PubMed DOI

Koedel U, Fingerle V, Pfister H-W (2015) Lyme neuroborreliosis—epidemiology, diagnosis and management. Nat Rev Neurol 11:446–456. https://doi.org/10.1038/nrneurol.2015.121 PubMed DOI

Rauer S, Kastenbauer S, Hofmann H et al (2020) Guidelines for diagnosis and treatment in neurology—lyme neuroborreliosis. GMS Ger Med Sci 18:1–29. https://doi.org/10.3205/000279 DOI

Christen H-J, Hanefeld F, Eiffert H, Thomssen R (1993) Epidemiology and clinical manifestations of Lyme Borreliosis in childhood. Acta Paediatr 82:1–76. https://doi.org/10.1111/j.1651-2227.1993.tb18082.x DOI

Garro A, Dash M, VanBuren JM, Nigrovic LE (2020) Development of a pediatric Lyme meningitis symptom measurement instrument using a Delphi technique. Ticks Tick Borne Dis 11:101418. https://doi.org/10.1016/j.ttbdis.2020.101418 PubMed DOI

Kuba M, Kubová Z, Kremláček J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res 47:189–202. https://doi.org/10.1016/j.visres.2006.09.020 PubMed DOI

Kremláček J, Kuba M, Kubová Z, Chlubnová J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109:169–175. https://doi.org/10.1007/s10633-004-4048-7 PubMed DOI

Kuba M, Kubova Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89 PubMed DOI

Langrová J, Kuba M, Kremláček J et al (2006) Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vis Res 46:536–544. https://doi.org/10.1016/j.visres.2005.06.024 PubMed DOI

Kuba M, Kremláček J, Langrová J et al (2012) Aging effect in pattern, motion and cognitive visual evoked potentials. Vis Res 62:9–16. https://doi.org/10.1016/j.visres.2012.03.014 PubMed DOI

Snyder EW, Dustman RE, Shearer DE (1981) Pattern reversal evoked potential amplitudes: life span changes. Electroencephalogr Clin Neurophysiol 52:429–434 PubMed DOI

Team RDC (2020) R: A language and environment for statistical computing

Lesser RL, Kornmehl EW, Pachner AR et al (1990) Neuro-ophthalmologic manifestations of Lyme disease. Ophthalmology 97:699–706. https://doi.org/10.1016/S0161-6420(90)32519-8 PubMed DOI

Lesser RL (1995) Ocular manifestations of Lyme disease. Am J Med 98:60S–62S. https://doi.org/10.1016/S0002-9343(99)80045-X PubMed DOI

Halperin JJ (2011) Neurologic manifestations of lyme disease. Curr Infect Dis Rep 13:360–366. https://doi.org/10.1007/s11908-011-0184-x PubMed DOI

Träisk F, Lindquist L (2012) Optic nerve involvement in Lyme disease. Curr Opin Ophthalmol 23:485–490. https://doi.org/10.1097/ICU.0b013e328358b1eb PubMed DOI

Andreassen S, Lindland EMS, Solheim AM et al (2021) Cognitive function, fatigue and Fazekas score in patients with acute neuroborreliosis. Ticks Tick Borne Dis 12. https://doi.org/10.1016/j.ttbdis.2021.101678

Djukic M, Schmidt-Samoa C, Lange P et al (2012) Cerebrospinal fluid findings in adults with acute Lyme neuroborreliosis. J Neurol 259:630–636. https://doi.org/10.1007/s00415-011-6221-8 PubMed DOI

Topakian R, Artemian H, Metschitzer B et al (2016) Dramatic response to a 3-week course of ceftriaxone in late neuroborreliosis mimicking atypical dementia and normal pressure hydrocephalus. J Neurol Sci 366:146–148. https://doi.org/10.1016/j.jns.2016.05.002 PubMed DOI

Hildenbrand P, Craven DE, Jones R, Nemeskal P (2009) Lyme Neuroborreliosis: manifestations of a rapidly emerging zoonosis. Am J Neuroradiol 30:1079–1087. https://doi.org/10.3174/ajnr.A1579 PubMed DOI PMC

Rupprecht TA, Koedel U, Fingerle V, Pfister HW (2008) The pathogenesis of lyme neuroborreliosis: from infection to inflammation. Mol Med 14:205–212. https://doi.org/10.2119/2007-00091.Rupprecht PubMed DOI

England J, Bohm R, Roberts E, Philipp M (1997) Lyme Neuroborreliosis in the Rhesus Monkey. Semin Neurol 17:53–56. https://doi.org/10.1055/s-2008-1040913 PubMed DOI

Evangelou N, Konz D, Esiri MM et al (2001) Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124:1813–1820. https://doi.org/10.1093/brain/124.9.1813 PubMed DOI

Bennett JL (2019) Optic neuritis. Contin Lifelong Learn Neurol 25:1236–1264. https://doi.org/10.1212/CON.0000000000000768 DOI

Blanc F, Ballonzoli L, Marcel C et al (2010) Lyme optic neuritis. J Neurol Sci 295:117–119. https://doi.org/10.1016/j.jns.2010.05.009 PubMed DOI

Dotevall L, Hagberg L (1999) Successful oral doxycycline treatment of lyme disease: associated facial palsy and meningitis. Clin Infect Dis 28:569–574. https://doi.org/10.1086/515145 PubMed DOI

Janáky M, Jánossy Á, Horváth G et al (2017) VEP and PERG in patients with multiple sclerosis, with and without a history of optic neuritis. Doc Ophthalmol 134:185–193. https://doi.org/10.1007/s10633-017-9589-7 PubMed DOI

Hemond CC, Bakshi R (2018) Magnetic resonance imaging in multiple sclerosis. Cold Spring Harb Perspect Med 8:1–21. https://doi.org/10.1101/cshperspect.a028969 DOI

Ørbæk M, Bodilsen J, Gynthersen RMM et al (2020) CT and MR neuroimaging findings in patients with Lyme neuroborreliosis: a national prospective cohort study. J Neurol Sci 419:117176. https://doi.org/10.1016/j.jns.2020.117176 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...