Clonal structure and the specificity of vaccine-induced T cell response to SARS-CoV-2 Spike protein
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38629062
PubMed Central
PMC11018901
DOI
10.3389/fimmu.2024.1369436
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, T cell, T cell receptor, TCR sequencing, adenoviral vaccine, spike protein, vaccination,
- MeSH
- Adenoviridae genetika MeSH
- COVID-19 * prevence a kontrola MeSH
- glykoprotein S, koronavirus MeSH
- infekční nemoci * MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- T-lymfocyty MeSH
- vakcíny proti COVID-19 MeSH
- vakcíny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcíny proti COVID-19 MeSH
- vakcíny * MeSH
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
Central European Institute of Technology Masaryk University Brno Czechia
Faculty of Biology Lomonosov Moscow State University Moscow Russia
Novosibirsk State University Medical School Novosibirsk Russia
Zobrazit více v PubMed
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. . Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. (2020) 586:589–93. doi: 10.1038/s41586-020-2639-4 PubMed DOI
Zhu F-C, Guan X-H, Li Y-H, Huang J-Y, Jiang T, Hou L-H, et al. . Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. (2020) 396:479–88. doi: 10.1016/s0140-6736(20)31605-6 PubMed DOI PMC
Baden LR, Sahly HME, Essink B, Kotloff K, Frey S, Novak R, et al. . Efficacy and safety of the mRNA-1273 SARS-coV-2 vaccine. New Engl J Med. (2020) 384(5):403–16. doi: 10.1056/nejmoa2035389 PubMed DOI PMC
Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, et al. . Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. (2020) 396:887–97. doi: 10.1016/s0140-6736(20)31866-3 PubMed DOI PMC
Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. . Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. (2021) 397:99–111. doi: 10.1016/s0140-6736(20)32661-1 PubMed DOI PMC
Moderbacher CR, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. . Antigen-specific adaptive immunity to SARS-coV-2 in acute COVID-19 and associations with age and disease severity. Cell. (2020) 183:996–1012.e19. doi: 10.1016/j.cell.2020.09.038 PubMed DOI PMC
Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J-B, Olsson A, et al. . Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. (2020) 183:158–168.e14. doi: 10.1016/j.cell.2020.08.017 PubMed DOI PMC
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. . Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. (2020) 26:842–4. doi: 10.1038/s41591-020-0901-9 PubMed DOI
Reynolds CJ, Swadling L, Gibbons JM, Pade C, Jensen MP, Diniz MO, et al. . Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci Immunol. (2020) 5:eabf3698. doi: 10.1126/sciimmunol.abf3698 PubMed DOI PMC
Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P, Dunmore BJ, et al. . Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity. (2021) 54:1257–1275.e8. doi: 10.1016/j.immuni.2021.05.010 PubMed DOI PMC
Notarbartolo S, Ranzani V, Bandera A, Gruarin P, Bevilacqua V, Putignano AR, et al. . Integrated longitudinal immunophenotypic, transcriptional, and repertoire analyses delineate immune responses in patients with COVID-19. Sci Immunol. (2021) 6(62):eabg5021. doi: 10.1126/sciimmunol.abg5021 PubMed DOI
Tan AT, Linster M, Tan CW, Bert NL, Chia WN, Kunasegaran K, et al. . Early induction of functional SARS-CoV-2 specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. (2021) 34:108728. doi: 10.1016/j.celrep.2021.108728 PubMed DOI PMC
Wyllie D, Mulchandani R, Jones HE, Taylor-Phillips S, Brooks T, Charlett A, et al. . SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: A prospective cohort study in keyworkers. Medrxiv. (2021). doi: 10.1101/2020.11.02.20222778 DOI
Molodtsov IA, Kegeles E, Mitin AN, Mityaeva O, Musatova OE, Panova AE, et al. . A prospective study of the protective effect of SARS-CoV-2–specific antibodies and T cells in Moscow residents. Clin Infect Dis. (2021) 75(1):e1–e9. doi: 10.1101/2021.08.19.21262278 PubMed DOI PMC
Komissarov AA, Dolzhikova IV, Efimov GA, Logunov DY, Mityaeva O, Molodtsov IA, et al. . Boosting of the SARS-coV-2–specific immune response after vaccination with single-dose sputnik light vaccine. J Immunol. (2022) 208:ji2101052. doi: 10.4049/jimmunol.2101052 PubMed DOI PMC
Marasco V, Carniti C, Guidetti A, Farina L, Magni M, Miceli R, et al. . T-cell immune response after mRNA SARS-CoV-2 vaccines is frequently detected also in the absence of seroconversion in patients with lymphoid Malignancies. Brit J Haematol. (2022) 196:548–58. doi: 10.1111/bjh.17877 PubMed DOI PMC
Molodtsov IA, Kegeles E, Mitin AN, Mityaeva O, Musatova OE, Panova AE, et al. . SARS-CoV-2-specific T cells and antibodies in COVID-19 protection: a prospective study. Clin Infect Dis. (2022) 75:ciac278. doi: 10.1093/cid/ciac278 PubMed DOI PMC
Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. . Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. (2020) 21(11):1336–45. doi: 10.1038/s41590-020-0782-6 PubMed DOI PMC
Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher C, et al. . Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. (2020) 181(7):1489–501.e15. doi: 10.1016/j.cell.2020.05.015 PubMed DOI PMC
Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, et al. . Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. (2021) 2:100204. doi: 10.1016/j.xcrm.2021.100204 PubMed DOI PMC
Shomuradova AS, Vagida MS, Sheetikov SA, Zornikova KV, Kiryukhin D, Titov A, et al. . SARS-coV-2 epitopes are recognized by a public and diverse repertoire of human T cell receptors. Immunity. (2020) 53:1245–1257.e5. doi: 10.1016/j.immuni.2020.11.004 PubMed DOI PMC
Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. . SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. (2020) 587(7833):270–4. doi: 10.1038/s41586-020-2598-9 PubMed DOI
Titov A, Shaykhutdinova R, Shcherbakova OV, Serdyuk YV, Sheetikov SA, Zornikova KV, et al. . Immunogenic epitope panel for accurate detection of non-cross-reactive T cell response to SARS-CoV-2. JCI Insight. (2022) 7(9):e157699. doi: 10.1172/jci.insight.157699 PubMed DOI PMC
Thieme CJ, Anft M, Paniskaki K, Blazquez-Navarro A, Doevelaar A, Seibert FS, et al. . Robust T cell response toward spike, membrane, and nucleocapsid SARS-coV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell Rep Med. (2020) 1:100092. doi: 10.1016/j.xcrm.2020.100092 PubMed DOI PMC
Ferretti AP, Kula T, Wang Y, Nguyen D, Weinheimer A, Dunlap GS, et al. . Unbiased screens show CD8+ T cells of COVID-19 patients recognize shared epitopes in SARS-CoV-2, most of which are not located in the Spike protein. Immunity. (2020) 53:1095–1107.e3. doi: 10.1016/j.immuni.2020.10.006 PubMed DOI PMC
Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, et al. . SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. (2020) 22(1):74–85. doi: 10.1038/s41590-020-00808-x PubMed DOI
Schulien I, Kemming J, Oberhardt V, Wild K, Seidel LM, Killmer S, et al. . Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat Med. (2021) 27:78–85. doi: 10.1038/s41591-020-01143-2 PubMed DOI
Cohen KW, Linderman SL, Moodie Z, Czartoski J, Lai L, Mantus G, et al. . Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep Med. (2021) 2(7):100354. doi: 10.1016/j.xcrm.2021.100354 PubMed DOI PMC
Zornikova KV, Khmelevskaya A, Sheetikov SA, Kiryukhin DO, Shcherbakova OV, Titov A, et al. . Clonal diversity predicts persistence of SARS-CoV-2 epitope-specific T-cell response. Commun Biol. (2022) 5:1351. doi: 10.1038/s42003-022-04250-7 PubMed DOI PMC
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol. (2023) 14:1070077. doi: 10.3389/fimmu.2023.1070077 PubMed DOI PMC
Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. . BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. (2021) 595(7868):572–7. doi: 10.1038/s41586-021-03653-6 PubMed DOI
Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L, Nieuwkoop NN, et al. . SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. (2021) 6:eabj1750. doi: 10.1126/sciimmunol.abj1750 PubMed DOI PMC
Woldemeskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest. (2021) 131(10):e149335. doi: 10.1172/jci149335 PubMed DOI PMC
Dolton G, Rius C, Hasan MS, Wall A, Szomolay B, Behiry E, et al. . Emergence of immune escape at dominant SARS-CoV-2 killer T-cell epitope. Cell. (2021) 185:2936–51.e19. doi: 10.1101/2021.06.21.21259010 PubMed DOI PMC
Wu D, Kolesnikov A, Yin R, Guest JD, Gowthaman R, Shmelev A, et al. . Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors. Nat Commun. (2022) 13:19. doi: 10.1038/s41467-021-27669-8 PubMed DOI PMC
Stanevich OV, Alekseeva EI, Sergeeva M, Fadeev AV, Komissarova KS, Ivanova AA, et al. . SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nat Commun. (2023) 14:149. doi: 10.1038/s41467-022-34033-x PubMed DOI PMC
Peng Y, Felce SL, Dong D, Penkava F, Mentzer AJ, Yao X, et al. . An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nat Immunol. (2021) 23(1):50–61. doi: 10.1038/s41590-021-01084-z PubMed DOI PMC
Swadling L, Diniz MO, Schmidt NM, Amin OE, Chandran A, Shaw E, et al. . Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature. (2021) 601(7891):110–7. doi: 10.1038/s41586-021-04186-8 PubMed DOI PMC
Rowntree LC, Petersen J, Juno JA, Chaurasia P, Wragg K, Koutsakos M, et al. . SARS-CoV-2-specific CD8+ T-cell responses and TCR signatures in the context of a prominent HLA-A*24:02 allomorph. Immunol Cell Biol. (2021) 99(9):990–1000. doi: 10.1111/imcb.12482 PubMed DOI PMC
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. . Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. New Engl J Med. (2020) 383:2603–15. doi: 10.1056/nejmoa2034577 PubMed DOI PMC
Nguyen THO, Cohen CA, Rowntree LC, Bull MB, Hachim A, Kedzierska K, et al. . T cells targeting SARS-coV-2: by infection, vaccination, and against future variants. Front Med. (2021) 8:793102. doi: 10.3389/fmed.2021.793102 PubMed DOI PMC
Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. . Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. (2020) 395(10240):1845–54. doi: 10.1016/s0140-6736(20)31208-3 PubMed DOI PMC
Parry H, Bruton R, Stephens C, Brown K, Amirthalingam G, Otter A, et al. . Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people. Immun Ageing. (2021) 18:34. doi: 10.1186/s12979-021-00246-9 PubMed DOI PMC
Parry H, Bruton R, Tut G, Ali M, Stephens C, Greenwood D, et al. . Immunogenicity of single vaccination with BNT162b2 or ChAdOx1 nCoV-19 at 5–6 weeks post vaccine in participants aged 80 years or older: an exploratory analysis. Lancet Heal Longev. (2021) 2:e554–60. doi: 10.1016/s2666-7568(21)00169-0 PubMed DOI PMC
Lioznov D, Amosova I, Sheetikov SA, Zornikova KV, Serdyuk Y, Efimov GA, et al. . Immunogenicity and safety of a recombinant adenovirus type-5 COVID-19 vaccine in adults: Data from a randomised, double-blind, placebo-controlled, single-dose, phase 3 trial in Russia. PloS One. (2023) 18:e0278878. doi: 10.1371/journal.pone.0278878 PubMed DOI PMC
Zhang Z, Mateus J, Coelho CH, Dan JM, Moderbacher CR, Gálvez RI, et al. . Humoral and cellular immune memory to four COVID-19 vaccines. Cell. (2022) 185:2434–2451.e17. doi: 10.1016/j.cell.2022.05.022 PubMed DOI PMC
Titov A, Shaykhutdinova R, Shcherbakova OV, Serdyuk Y, Sheetikov SA, Zornikova KV, et al. . Immunogenic epitope panel for accurate detection of non-cross-reactive T cell response to SARS-CoV-2. Medrxiv. (2021) 2021. doi: 10.1101/2021.12.12.21267518 PubMed DOI PMC
Nolan S, Vignali M, Klinger M, Dines JN, Kaplan IM, Svejnoha E, et al. . A large-scale database of T-cell receptor beta (TCRβ) sequences and binding associations from natural and synthetic exposure to SARS-CoV-2. Res Square. (2020). doi: 10.21203/rs.3.rs-51964/v1 DOI
Goncharov M, Bagaev D, Shcherbinin D, Zvyagin I, Bolotin D, Thomas PG, et al. . VDJdb in the pandemic era: a compendium of T cell receptors specific for SARS-CoV-2. Nat Methods. (2022) 19:1017–9. doi: 10.1038/s41592-022-01578-0 PubMed DOI
Mateus J, Dan JM, Zhang Z, Moderbacher CR, Lammers M, Goodwin B, et al. . Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science. (2021) 374:eabj9853. doi: 10.1126/science.abj9853 PubMed DOI PMC
Tarke A, Coelho CH, Zhang Z, Dan JM, Yu ED, Methot N, et al. . SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. (2022) 185:847–859.e11. doi: 10.1016/j.cell.2022.01.015 PubMed DOI PMC
Keeton R, Tincho MB, Ngomti A, Baguma R, Benede N, Suzuki A, et al. . T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. (2022) 603:488–92. doi: 10.1038/s41586-022-04460-3 PubMed DOI PMC
Guerrera G, Picozza M, D’Orso S, Placido R, Pirronello M, Verdiani A, et al. . BNT162b2 vaccination induces durable SARS-CoV-2 specific T cells with a stem cell memory phenotype. Sci Immunol. (2021) 6:eabl5344. doi: 10.1126/sciimmunol.abl5344 PubMed DOI
Sureshchandra S, Lewis SA, Doratt BM, Jankeel A, Ibraim IC, Messaoudi I. Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI Insight. (2021) 6:e153201. doi: 10.1172/jci.insight.153201 PubMed DOI PMC
Cao Q, Wu S, Xiao C, Chen S, Chi X, Cui X, et al. . Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discovery. (2021) 7:64. doi: 10.1038/s41421-021-00300-2 PubMed DOI PMC
Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, et al. . Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. (2021) 596(7871):268–72. doi: 10.1038/s41586-021-03681-2 PubMed DOI PMC
Lang-Meli J, Luxenburger H, Wild K, Karl V, Oberhardt V, Alizei ES, et al. . SARS-CoV-2-specific T-cell epitope repertoire in convalescent and mRNA-vaccinated individuals. Nat Microbiol. (2022) 7:675–9. doi: 10.1038/s41564-022-01106-y PubMed DOI PMC
Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Rashid R, Westlake T, et al. . SARS-CoV-2 vaccination diversifies the CD4+ spike-reactive T cell repertoire in patients with prior SARS-CoV-2 infection. eBioMedicine. (2022) 80:104048. doi: 10.1016/j.ebiom.2022.104048 PubMed DOI PMC
Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK, Chou C-H, et al. . SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nat Immunol. (2022) 23(5):781–90. doi: 10.1038/s41590-022-01184-4 PubMed DOI PMC
Hernandez SPA, Hersby DS, Munk KK, Tamhane T, Trubach D, Tagliamonte M, et al. . Three doses of BNT162b2 COVID-19 mRNA vaccine establish long-lasting CD8+ T cell immunity in CLL and MDS patients. Front Immunol. (2023) 13:1035344. doi: 10.3389/fimmu.2022.1035344 PubMed DOI PMC
Dolton G, Rius C, Hasan MS, Wall A, Szomolay B, Behiry E, et al. . Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell. (2022) 185:2936–2951.e19. doi: 10.1016/j.cell.2022.07.002 PubMed DOI PMC
Zvyagin I, Mamedov I, Tatarinova O, Komech E, Kurnikova E, Boyakova E, et al. . Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children. Leukemia. (2016) 31:1145. doi: 10.1038/leu.2016.321 PubMed DOI
Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. . MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. (2015) 12:380–1. doi: 10.1038/nmeth.3364 PubMed DOI
Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ, Tuganbaev TR, et al. . Towards error-free profiling of immune repertoires. Nat Methods. (2014) 11:653–5. doi: 10.1038/nmeth.2960 PubMed DOI
Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, et al. . VDJtools: unifying post-analysis of T cell receptor repertoires. PloS Comput Biol. (2015) 11:e1004503. doi: 10.1371/journal.pcbi.1004503 PubMed DOI PMC
Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. (2005) 57:33–41. doi: 10.1007/s00251-005-0781-7 PubMed DOI