• This record comes from PubMed

K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins

. 2024 Jul ; 43 (14) : 2862-2877. [epub] 20240610

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
GA CR 22-26981S Technologická Agentura České Republiky (Czech Technological Agency)
940283 Israel Cancer Research Fund (ICRF)
HHSN261201500003C NCI NIH HHS - United States
ub-RASDisease,ID: 772649 EC | Horizon 2020 Framework Programme (H2020)
1440/21 Israel Science Foundation (ISF)
HHSN261201500003I NCI NIH HHS - United States

Links

PubMed 38858602
PubMed Central PMC11251195
DOI 10.1038/s44318-024-00146-w
PII: 10.1038/s44318-024-00146-w
Knihovny.cz E-resources

The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.

See more in PubMed

Baietti MF, Simicek M, Abbasi Asbagh L, Radaelli E, Lievens S, Crowther J, Steklov M, Aushev VN, Martinez Garcia D, Tavernier J, et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med. 2016;8:288–303. doi: 10.15252/emmm.201505972. PubMed DOI PMC

Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat Struct Mol Biol. 2013;20:46–52. doi: 10.1038/nsmb.2430. PubMed DOI PMC

Baker R, Wilkerson EM, Sumita K, Isom DG, Sasaki AT, Dohlman HG, Campbell SL. Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination. J Biol Chem. 2013;288:36856–36862. doi: 10.1074/jbc.C113.525691. PubMed DOI PMC

Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34:1565–1576. doi: 10.1101/gad.343129.120. PubMed DOI PMC

Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol. 2021;71:180–192. doi: 10.1016/j.sbi.2021.06.015. PubMed DOI PMC

Chaker-Margot M, Werten S, Dunzendorfer-Matt T, Lechner S, Ruepp A, Scheffzek K, Maier T. Structural basis of activation of the tumor suppressor protein neurofibromin. Mol Cell. 2022;82:1288–1296.e1285. doi: 10.1016/j.molcel.2022.03.011. PubMed DOI

Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 2006;10:459–472. doi: 10.1016/j.ccr.2006.10.003. PubMed DOI PMC

Cruz VH, Arner EN, Du W, Bremauntz AE, Brekken RA. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight. 2019;5:e126117. doi: 10.1172/jci.insight.126117. PubMed DOI PMC

Dybas JM, O’Leary CE, Ding H, Spruce LA, Seeholzer SH, Oliver PM. Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4(+) T cells. Nat Immunol. 2019;20:747–755. doi: 10.1038/s41590-019-0381-6. PubMed DOI PMC

Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, Madhavan S, Ketchum KA. The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res. 2015;14:2707–2713. doi: 10.1021/pr501254j. PubMed DOI

Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene. 2008;27:5975–5987. doi: 10.1038/onc.2008.213. PubMed DOI PMC

Grudzien P, Jang H, Leschinsky N, Nussinov R, Gaponenko V. Conformational dynamics allows sampling of an “active-like” state by oncogenic K-Ras-GDP. J Mol Biol. 2022;434:167695. doi: 10.1016/j.jmb.2022.167695. PubMed DOI

Hobbs GA, Bonini MG, Gunawardena HP, Chen X, Campbell SL. Glutathiolated Ras: characterization and implications for Ras activation. Free Radic Biol Med. 2013;57:221–229. doi: 10.1016/j.freeradbiomed.2012.10.531. PubMed DOI PMC

Jang H, Smith IN, Eng C, Nussinov R. The mechanism of full activation of tumor suppressor PTEN at the phosphoinositide-enriched membrane. iScience. 2021;24:102438. doi: 10.1016/j.isci.2021.102438. PubMed DOI PMC

Jang H, Zhang M, Nussinov R. The quaternary assembly of KRas4B with Raf-1 at the membrane. Comput Struct Biotechnol J. 2020;18:737–748. doi: 10.1016/j.csbj.2020.03.018. PubMed DOI PMC

Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D. Differential modification of Ras proteins by ubiquitination. Mol Cell. 2006;21:679–687. doi: 10.1016/j.molcel.2006.02.011. PubMed DOI

Kikuchi A, Demo SD, Ye ZH, Chen YW, Williams LT. ralGDS family members interact with the effector loop of ras p21. Mol Cell Biol. 1994;14:7483–7491. PubMed PMC

Levin-Kravets O, Kordonsky A, Shusterman A, Biswas S, Persaud A, Elias S, Langut Y, Florentin A, Simpson-Lavy KJ, Yariv E, et al. Split chloramphenicol acetyl-transferase assay reveals self-ubiquitylation-dependent regulation of UBE3B. J Mol Biol. 2021;433:167276. doi: 10.1016/j.jmb.2021.167276. PubMed DOI

Levin-Kravets O, Tanner N, Shohat N, Attali I, Keren-Kaplan T, Shusterman A, Artzi S, Varvak A, Reshef Y, Shi X, et al. A bacterial genetic selection system for ubiquitylation cascade discovery. Nat Methods. 2016;13:945–952. doi: 10.1038/nmeth.4003. PubMed DOI

Liu Y, Zhang M, Jang H, Nussinov R. Higher-order interactions of Bcr-Abl can broaden chronic myeloid leukemia (CML) drug repertoire. Protein Sci. 2023;32:e4504. doi: 10.1002/pro.4504. PubMed DOI PMC

Magits W, Sablina AA. The regulation of the protein interaction network by monoubiquitination. Curr Opin Struct Biol. 2022;73:102333. doi: 10.1016/j.sbi.2022.102333. PubMed DOI

Miller AL, Perurena N, Gardner A, Hinoue T, Loi P, Laird PW, Cichowski K. DAB2IP is a bifunctional tumor suppressor that regulates wild-type RAS and inflammatory cascades in KRAS mutant colon cancer. Cancer Res. 2023;83:1800–1814. doi: 10.1158/0008-5472.CAN-22-0370. PubMed DOI PMC

Mondal S, Hsiao K, Goueli SA. A homogenous bioluminescent system for measuring GTPase, GTPase activating protein, and guanine nucleotide exchange factor activities. Assay Drug Dev Technol. 2015;13:444–455. doi: 10.1089/adt.2015.643. PubMed DOI PMC

Najm P, Zhao P, Steklov M, Sewduth RN, Baietti MF, Pandolfi S, Criem N, Lechat B, Maia TM, Van Haver D, et al. Loss-of-function mutations in TRAF7 and KLF4 cooperatively activate RAS-like GTPase signaling and promote meningioma development. Cancer Res. 2021;81:4218–4229. doi: 10.1158/0008-5472.CAN-20-3669. PubMed DOI

Ni S, Liu Q, Chen X, Ding L, Cai L, Mao F, Shi D, Hoffman RM, Li J, Jia L. Pro-senescence neddylation inhibitor combined with a senescence activated beta-galactosidase prodrug to selectively target cancer cells. Signal Transduct Target Ther. 2022;7:313. doi: 10.1038/s41392-022-01128-2. PubMed DOI PMC

Ovaa H, Vertegaal ACO. Probing ubiquitin and SUMO conjugation and deconjugation. Biochem Soc Trans. 2018;46:423–436. doi: 10.1042/BST20170086. PubMed DOI

Prag G, Misra S, Jones EA, Ghirlando R, Davies BA, Horazdovsky BF, Hurley JH. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell. 2003;113:609–620. doi: 10.1016/S0092-8674(03)00364-7. PubMed DOI

Punekar SR, Velcheti V, Neel BG, Wong KK. The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 2022;19:637–655. doi: 10.1038/s41571-022-00671-9. PubMed DOI PMC

Ramakrishnan G, Parajuli P, Singh P, Friend C, Hurwitz E, Prunier C, Razzaque MS, Xu K, Atfi A. NF1 loss of function as an alternative initiating event in pancreatic ductal adenocarcinoma. Cell Rep. 2022;41:111623. doi: 10.1016/j.celrep.2022.111623. PubMed DOI PMC

Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg I, et al. An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice. Nat Med. 2013;19:313–321. doi: 10.1038/nm.3082. PubMed DOI PMC

Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, Diaz Bde D, Miller G, David G. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest. 2014;124:2125–2135. doi: 10.1172/JCI72619. PubMed DOI PMC

Sapmaz A, Berlin I, Bos E, Wijdeven RH, Janssen H, Konietzny R, Akkermans JJ, Erson-Bensan AE, Koning RI, Kessler BM, et al. USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat Commun. 2019;10:1454. doi: 10.1038/s41467-019-09437-x. PubMed DOI PMC

Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal. 2011;4:ra13. doi: 10.1126/scisignal.2001518. PubMed DOI PMC

Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane MH, Avanessian SC, et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell. 2021;184:4348–4371.e4340. doi: 10.1016/j.cell.2021.07.016. PubMed DOI PMC

Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, Francavilla C, Tolar P, Bishop GA, Hostager BS, et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol Syst Biol. 2015;11:810. doi: 10.15252/msb.20145880. PubMed DOI PMC

Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, Pignolo RJ, Robbins PD, Niedernhofer LJ, Ikeno Y, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13:4827. doi: 10.1038/s41467-022-32552-1. PubMed DOI PMC

Sewduth RN, Carai P, Ivanisevic T, Zhang M, Jang H, Lechat B, Van Haver D, Impens F, Nussinov R, Jones E, et al. Spatial mechano-signaling regulation of GTPases through non-degradative ubiquitination. Adv Sci. 2023;10:e2303367. doi: 10.1002/advs.202303367. PubMed DOI PMC

Shin D, Na W, Lee JH, Kim G, Baek J, Park SH, Choi CY, Lee S. Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion. Elife. 2017;6:e29154. doi: 10.7554/eLife.29154. PubMed DOI PMC

Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33. doi: 10.1016/j.cell.2017.06.009. PubMed DOI PMC

Simicek M, Lievens S, Laga M, Guzenko D, Aushev VN, Kalev P, Baietti MF, Strelkov SV, Gevaert K, Tavernier J, et al. The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response. Nat Cell Biol. 2013;15:1220–1230. doi: 10.1038/ncb2847. PubMed DOI

Steklov M, Pandolfi S, Baietti MF, Batiuk A, Carai P, Najm P, Zhang M, Jang H, Renzi F, Cai Y, et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 2018;362:1177–1182. doi: 10.1126/science.aap7607. PubMed DOI PMC

Thakur VS, Welford SM. Generation of a conditional mutant knock-in under the control of the natural promoter using CRISPR-Cas9 and Cre-Lox systems. PLoS ONE. 2020;15:e0240256. doi: 10.1371/journal.pone.0240256. PubMed DOI PMC

Wang X, Min S, Liu H, Wu N, Liu X, Wang T, Li W, Shen Y, Wang H, Qian Z, et al. Nf1 loss promotes Kras-driven lung adenocarcinoma and results in Psat1-mediated glutamate dependence. EMBO Mol Med. 2019;11:e9856. doi: 10.15252/emmm.201809856. PubMed DOI PMC

Williams JG, Pappu K, Campbell SL. Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc Natl Acad Sci USA. 2003;100:6376–6381. doi: 10.1073/pnas.1037299100. PubMed DOI PMC

Xu L, Lubkov V, Taylor LJ, Bar-Sagi D. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol. 2010;20:1372–1377. doi: 10.1016/j.cub.2010.06.051. PubMed DOI PMC

Yen HC, Xu Q, Chou DM, Zhao Z, Elledge SJ. Global protein stability profiling in mammalian cells. Science. 2008;322:918–923. doi: 10.1126/science.1160489. PubMed DOI

Yin G, Zhang J, Nair V, Truong V, Chaia A, Petela J, Harrison J, Gorfe AA, Campbell SL. KRAS ubiquitination at lysine 104 retains exchange factor regulation by dynamically modulating the conformation of the interface. iScience. 2020;23:101448. doi: 10.1016/j.isci.2020.101448. PubMed DOI PMC

Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, et al. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 2014;4:452–465. doi: 10.1158/2159-8290.CD-13-0646. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...