Optimizing Recovery in Elderly Patients: Anabolic Benefits of Glucose Supplementation during the Rehydration Period
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
Grantová podpora
No. 8404413
Charles University: Cooperatio
n/a
Aqualife Institute
DZRO-FVZ22-KLINIKA II MH CZ - DRO (UHHK, 00179906)
Ministry of Defence of the Czech Republic
PubMed
38892539
PubMed Central
PMC11173922
DOI
10.3390/nu16111607
PII: nu16111607
Knihovny.cz E-zdroje
- Klíčová slova
- dehydration, glucose, malnutrition, refeeding syndrome,
- MeSH
- dehydratace terapie MeSH
- glukosa * metabolismus aplikace a dávkování MeSH
- krystaloidní roztoky aplikace a dávkování MeSH
- lidé MeSH
- mortalita v nemocnicích MeSH
- potravní doplňky MeSH
- realimentační syndrom prevence a kontrola MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- tekutinová terapie * metody MeSH
- vodní a elektrolytová rovnováha MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- glukosa * MeSH
- krystaloidní roztoky MeSH
BACKGROUND: Since many acutely admitted older adults display signs of dehydration, treatment using balanced crystalloids is an important part of medical care. Additionally, many of these patients suffer from chronic malnutrition. We speculated that the early addition of glucose might ameliorate the hospital-related drop of caloric intake and modify their catabolic status. METHODS: We included patients 78 years and older, admitted acutely for non-traumatic illnesses. The patients were randomized into either receiving balanced crystalloid (PlasmaLyte; group P) or balanced crystalloid enriched with 100 g of glucose per liter (group G). The information about fluid balance and levels of minerals were collected longitudinally. RESULTS: In the G group, a significantly higher proportion of patients developed signs of refeeding syndrome, i.e., drops in phosphates, potassium and/or magnesium when compared to group P (83.3 vs. 16.7%, p < 0.01). The drop in phosphate levels was the most pronounced. The urinalysis showed no differences in the levels of these minerals in the urine, suggesting their uptake into the cells. There were no differences in the in-hospital mortality or in the 1-year mortality. CONCLUSION: The short-term administration of balanced crystalloids with glucose induced an anabolic shift of electrolytes in acutely admitted older adults.
Faculty of Medicine in Hradec Kralove Charles University 500 03 Hradec Kralove Czech Republic
Geriatric Center Pardubice Hospital 532 03 Pardubice Czech Republic
Zobrazit více v PubMed
Volkert D., Beck A.M., Cederholm T., Cruz-Jentoft A., Goisser S., Hooper L., Kiesswetter E., Maggio M., Raynaud-Simon A., Sieber C.C., et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019;38:10–47. doi: 10.1016/j.clnu.2018.05.024. PubMed DOI
Atciyurt K., Heybeli C., Smith L., Veronese N., Soysal P. The Prevalence, Risk Factors and Clinical Implications of Dehydration in Older Patients: A Cross-Sectional Study. Acta Clin. Belg. 2024;79:12–18. doi: 10.1080/17843286.2023.2275922. PubMed DOI
Hart K., Marsden R., Paxman J. Generation of Thirst: A Critical Review of Dehydration among Older Adults Living in Residential Care. Nurs. Resid. Care. 2020;22:1–12. doi: 10.12968/nrec.2020.22.12.6. DOI
Tsiompanou E., Lucas C., Stroud M. Overfeeding and Overhydration in Elderly Medical Patients: Lessons from the Liverpool Care Pathway. Clin. Med. 2013;13:248–251. doi: 10.7861/clinmedicine.13-3-248. PubMed DOI PMC
Cohen R., Fernie G., Roshan Fekr A. Fluid Intake Monitoring Systems for the Elderly: A Review of the Literature. Nutrients. 2021;13:2092. doi: 10.3390/nu13062092. PubMed DOI PMC
Fortes M.B., Owen J.A., Raymond-Barker P., Bishop C., Elghenzai S., Oliver S.J., Walsh N.P. Is This Elderly Patient Dehydrated? Diagnostic Accuracy of Hydration Assessment Using Physical Signs, Urine, and Saliva Markers. J. Am. Med. Dir. Assoc. 2015;16:221–228. doi: 10.1016/j.jamda.2014.09.012. PubMed DOI
Self W.H., Semler M.W., Wanderer J.P., Wang L., Byrne D.W., Collins S.P., Slovis C.M., Lindsell C.J., Ehrenfeld J.M., Siew E.D., et al. Balanced Crystalloids versus Saline in Noncritically Ill Adults. N. Engl. J. Med. 2018;378:819–828. doi: 10.1056/NEJMoa1711586. PubMed DOI PMC
Pourhassan M., Cuvelier I., Gehrke I., Marburger C., Modreker M.K., Volkert D., Willschrei H.P., Wirth R. Risk Factors of Refeeding Syndrome in Malnourished Older Hospitalized Patients. Clin. Nutr. 2018;37:1354–1359. doi: 10.1016/j.clnu.2017.06.008. PubMed DOI
McWhirter J.P., Pennington C.R. Incidence and Recognition of Malnutrition in Hospital. BMJ. 1994;308:945–948. doi: 10.1136/bmj.308.6934.945. PubMed DOI PMC
Edington J., Kon P. Prevalence of Malnutrition in the Community. Nutrition. 1997;13:238–240. doi: 10.1016/S0899-9007(96)00415-7. PubMed DOI
Aubry E., Friedli N., Schuetz P., Stanga Z. Refeeding Syndrome in the Frail Elderly Population: Prevention, Diagnosis and Management. Clin. Exp. Gastroenterol. 2018;11:255–264. doi: 10.2147/CEG.S136429. PubMed DOI PMC
Proctor D.N., Balagopal P., Nair K.S. Age-Related Sarcopenia in Humans Is Associated with Reduced Synthetic Rates of Specific Muscle Proteins. J. Nutr. 1998;128:351S–355S. doi: 10.1093/jn/128.2.351S. PubMed DOI
Attaix D., Mosoni L., Dardevet D., Combaret L., Mirand P.P., Grizard J. Altered Responses in Skeletal Muscle Protein Turnover during Aging in Anabolic and Catabolic Periods. Int. J. Biochem. Cell Biol. 2005;37:1962–1973. doi: 10.1016/j.biocel.2005.04.009. PubMed DOI
Phillips S.M., Dickerson R.N., Moore F.A., Paddon-Jones D., Weijs P.J.M. Protein Turnover and Metabolism in the Elderly Intensive Care Unit Patient. Nutr. Clin. Pract. 2017;32:112S–120S. doi: 10.1177/0884533616686719. PubMed DOI
Barton A.D., Beigg C.L., Macdonald I.A., Allison S.P. A Recipe for Improving Food Intakes in Elderly Hospitalized Patients. Clin. Nutr. 2000;19:451–454. doi: 10.1054/clnu.2000.0149. PubMed DOI
Barton A.D., Beigg C.L., Macdonald I.A., Allison S.P. High Food Wastage and Low Nutritional Intakes in Hospital Patients. Clin. Nutr. 2000;19:445–449. doi: 10.1054/clnu.2000.0150. PubMed DOI
Hegerová P., Dědková Z., Sobotka L. Early Nutritional Support and Physiotherapy Improved Long-Term Self-Sufficiency in Acutely Ill Older Patients. Nutrition. 2015;31:166–170. doi: 10.1016/j.nut.2014.07.010. PubMed DOI
Sobotka L., Sobotka O. The Predominant Role of Glucose as a Building Block and Precursor of Reducing Equivalents. Curr. Opin. Clin. Nutr. Metab. Care. 2021;24:555–562. doi: 10.1097/MCO.0000000000000786. PubMed DOI
Skořepa P., Sobotka O., Fortunato J., Bláha V., Horáček J.M. The Central Role of Glucose in Metabolism and Nutrition of Critically Ill Patients. Mil. Med. Sci. Lett. 2017;86:145–157. doi: 10.31482/mmsl.2017.026. DOI
Elkalaf M., Anděl M., Trnka J. Low Glucose but Not Galactose Enhances Oxidative Mitochondrial Metabolism in C2C12 Myoblasts and Myotubes. PLoS ONE. 2013;8:e70772. doi: 10.1371/journal.pone.0070772. PubMed DOI PMC
Dringen R., Hoepken H.H., Minich T., Ruedig C. 1.3 Pentose Phosphate Pathway and NADPH Metabolism BT—Handbook of Neurochemistry and Molecular Neurobiology: Brain Energetics. In: Lajtha A., Gibson G.E., Dienel G.A., editors. Integration of Molecular and Cellular Processes. Springer; Boston, MA, USA: 2007. pp. 41–62.
Boros L.G., Lee P.W., Brandes J.L., Cascante M., Muscarella P., Schirmer W.J., Melvin W.S., Ellison E.C. Nonoxidative Pentose Phosphate Pathways and Their Direct Role in Ribose Synthesis in Tumors: Is Cancer a Disease of Cellular Glucose Metabolism? Med. Hypotheses. 1998;50:55–59. doi: 10.1016/s0306-9877(98)90178-5. PubMed DOI
Halse R., Bonavaud S.M., Armstrong J.L., McCormack J.G., Yeaman S.J. Control of Glycogen Synthesis by Glucose, Glycogen, and Insulin in Cultured Human Muscle Cells. Diabetes. 2001;50:720–726. doi: 10.2337/diabetes.50.4.720. PubMed DOI
Alfarouk K.O., Ahmed S.B.M., Elliott R.L., Benoit A., Alqahtani S.S., Ibrahim M.E., Bashir A.H.H., Alhoufie S.T.S., Elhassan G.O., Wales C.C., et al. The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular PH. Metabolites. 2020;10:285. doi: 10.3390/metabo10070285. PubMed DOI PMC
Kather H., Rivera M., Brand K. Interrelationship and Control of Glucose Metabolism and Lipogenesis in Isolated Fat-Cells. Effect of the Amount of Glucose Uptake on the Rates of the Pentose Phosphate Cycle and of Fatty Acid Synthesis. Biochem. J. 1972;128:1089–1096. doi: 10.1042/bj1281089. PubMed DOI PMC
Winter T.A., O’Keefe S.J., Callanan M., Marks T. The Effect of Severe Undernutrition and Subsequent Refeeding on Whole-Body Metabolism and Protein Synthesis in Human Subjects. J. Parenter. Enteral Nutr. 2005;29:221–228. doi: 10.1177/0148607105029004221. PubMed DOI
Walmsley R.S. Refeeding Syndrome: Screening, Incidence, and Treatment during Parenteral Nutrition. J. Gastroenterol. Hepatol. 2013;28((Suppl. S4)):113–117. doi: 10.1111/jgh.12345. PubMed DOI
O’Connor G., Goldin J. The Refeeding Syndrome and Glucose Load. Int. J. Eat. Disord. 2011;44:182–185. doi: 10.1002/eat.20791. PubMed DOI
Reber E., Friedli N., Vasiloglou M.F., Schuetz P., Stanga Z. Management of Refeeding Syndrome in Medical Inpatients. J. Clin. Med. 2019;8:2202. doi: 10.3390/jcm8122202. PubMed DOI PMC
Olsen S.U., Hesseberg K., Aas A.M., Ranhoff A.H., Bye A. Refeeding Syndrome Occurs among Older Adults Regardless of Refeeding Rates: A Systematic Review. Nutr. Res. 2021;91:1–12. doi: 10.1016/j.nutres.2021.05.004. PubMed DOI
Lubart E., Leibovitz A., Dror Y., Katz E., Segal R. Mortality after Nasogastric Tube Feeding Initiation in Long-Term Care Elderly with Oropharyngeal Dysphagia--the Contribution of Refeeding Syndrome. Gerontology. 2009;55:393–397. doi: 10.1159/000218162. PubMed DOI
Friedli N., Stanga Z., Culkin A., Crook M., Laviano A., Sobotka L., Kressig R.W., Kondrup J., Mueller B., Schuetz P. Management and Prevention of Refeeding Syndrome in Medical Inpatients: An Evidence-Based and Consensus-Supported Algorithm. Nutrition. 2018;47:13–20. doi: 10.1016/j.nut.2017.09.007. PubMed DOI
Bowling T.E., Gabe S.M. Artificial Nutrition and Nutrition Support and Refeeding Syndrome. Medicine. 2019;47:159–165. doi: 10.1016/j.mpmed.2018.12.003. DOI
Roberfroid M.B. Caloric Value of Inulin and Oligofructose. J. Nutr. 1999;129:1436S–1437S. doi: 10.1093/jn/129.7.1436S. PubMed DOI
National Instutite for Health and Care Excellence . Nutrition Support for Adults: Oral Nutrition Support, Enteral Tube Feeding and Parenteral Nutrition. National Instutite for Health and Care Excellence; London, UK: 2017. [(accessed on 24 April 2024)]. Available online: https://www.nice.org.uk/guidance/cg32. PubMed
Doig G.S., Simpson F., Heighes P.T., Bellomo R., Chesher D., Caterson I.D., Reade M.C., Harrigan P.W.J. Restricted versus Continued Standard Caloric Intake during the Management of Refeeding Syndrome in Critically Ill Adults: A Randomised, Parallel-Group, Multicentre, Single-Blind Controlled Trial. Lancet Respir. Med. 2015;3:943–952. doi: 10.1016/S2213-2600(15)00418-X. PubMed DOI
Olthof L.E., Koekkoek W.A.C.K., van Setten C., Kars J.C.N., van Blokland D., van Zanten A.R.H. Impact of Caloric Intake in Critically Ill Patients with, and without, Refeeding Syndrome: A Retrospective Study. Clin. Nutr. 2018;37:1609–1617. doi: 10.1016/j.clnu.2017.08.001. PubMed DOI
Cammarota G., Cesaro P., Cazzato A., Cianci R., Fedeli P., Ojetti V., Certo M., Sparano L., Giovannini S., Larocca L.M., et al. The Water Immersion Technique Is Easy to Learn for Routine Use during EGD for Duodenal Villous Evaluation: A Single-Center 2-Year Experience. J. Clin. Gastroenterol. 2009;43:244–248. doi: 10.1097/MCG.0b013e318159c654. PubMed DOI
Ma M., Long Q., Chen F., Zhang T., Lu M., Wang W., Chen L. Nutrition Management of Congenital Glucose-Galactose Malabsorption: Case Report of a Chinese Infant. Medicine. 2019;98:e16828. doi: 10.1097/MD.0000000000016828. PubMed DOI PMC
Allingstrup M.J., Esmailzadeh N., Wilkens Knudsen A., Espersen K., Hartvig Jensen T., Wiis J., Perner A., Kondrup J. Provision of Protein and Energy in Relation to Measured Requirements in Intensive Care Patients. Clin. Nutr. 2012;31:462–468. doi: 10.1016/j.clnu.2011.12.006. PubMed DOI
Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., Phillips S., Sieber C., Stehle P., Teta D., et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013;14:542–559. doi: 10.1016/j.jamda.2013.05.021. PubMed DOI
Sobotka L. Nutritional Support in Geriatric Patients: The ESPEN New Recommended Guidelines. Vnitr. Lek. 2018;64:1053–1058. doi: 10.36290/vnl.2018.150. PubMed DOI
McKendry J., Thomas A.C.Q., Phillips S.M. Muscle Mass Loss in the Older Critically Ill Population: Potential Therapeutic Strategies. Nutr. Clin. Pract. 2020;35:607–616. doi: 10.1002/ncp.10540. PubMed DOI
Doig G.S., Simpson F., Sweetman E.A., Finfer S.R., Cooper D.J., Heighes P.T., Davies A.R., O’Leary M., Solano T., Peake S. Early Parenteral Nutrition in Critically Ill Patients with Short-Term Relative Contraindications to Early Enteral Nutrition: A Randomized Controlled Trial. JAMA. 2013;309:2130–2138. doi: 10.1001/jama.2013.5124. PubMed DOI
Englund D.A., Kirn D.R., Koochek A., Zhu H., Travison T.G., Reid K.F., von Berens Å., Melin M., Cederholm T., Gustafsson T., et al. Nutritional Supplementation With Physical Activity Improves Muscle Composition in Mobility-Limited Older Adults, The VIVE2 Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2017;73:95–101. doi: 10.1093/gerona/glx141. PubMed DOI PMC