In vivo interaction screening reveals liver-derived constraints to metastasis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39048831
PubMed Central
PMC11306111
DOI
10.1038/s41586-024-07715-3
PII: 10.1038/s41586-024-07715-3
Knihovny.cz E-zdroje
- MeSH
- CRISPR-Cas systémy * genetika MeSH
- fluorescence MeSH
- hepatocyty * metabolismus cytologie patologie MeSH
- játra * cytologie metabolismus patologie MeSH
- kolorektální nádory patologie metabolismus MeSH
- Krüppel-like faktor 4 metabolismus MeSH
- lidé MeSH
- melanom metabolismus patologie MeSH
- metastázy nádorů * farmakoterapie patologie prevence a kontrola MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory jater * farmakoterapie metabolismus patologie prevence a kontrola sekundární MeSH
- nádory slinivky břišní metabolismus patologie MeSH
- proteiny nervové tkáně * antagonisté a inhibitory metabolismus MeSH
- semaforiny antagonisté a inhibitory metabolismus MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- KLF4 protein, human MeSH Prohlížeč
- Klf4 protein, mouse MeSH Prohlížeč
- Krüppel-like faktor 4 MeSH
- PLXNB2 protein, human MeSH Prohlížeč
- Plxnb2 protein, mouse MeSH Prohlížeč
- proteiny nervové tkáně * MeSH
- semaforiny MeSH
- transpozibilní elementy DNA MeSH
It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.
Department of Biosystems Science and Engineering ETH Zurich Basel Switzerland
Department of Molecular Life Sciences University of Zurich Zurich Switzerland
Institute of Medical Genetics and Pathology University Hospital Basel Basel Switzerland
Zobrazit více v PubMed
Celià-Terrassa, T. & Kang, Y. Distinctive properties of metastasis-initiating cells. Genes Dev.30, 892–908 (2016). 10.1101/gad.277681.116 PubMed DOI PMC
Montini, E. et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol. Ther.6, 759–769 (2002). 10.1006/mthe.2002.0812 PubMed DOI
Ombrato, L. et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature572, 603–608 (2019). 10.1038/s41586-019-1487-6 PubMed DOI PMC
Paget, S. The distribution of secondary growths in cancer of the breast. Lancet133, 571–573 (1889). PubMed
Abbruzzese, J. L., Abbruzzese, M. C., Lenzi, R., Hess, K. R. & Raber, M. N. Analysis of a diagnostic strategy for patients with suspected tumors of unknown origin. J. Clin. Oncol.13, 2094–2103 (1995). 10.1200/JCO.1995.13.8.2094 PubMed DOI
Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat. Neurosci.21, 440–446 (2018). 10.1038/s41593-017-0060-6 PubMed DOI
Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem.274, 305–315 (1999). 10.1074/jbc.274.1.305 PubMed DOI
Chembazhi, U. V., Bangru, S., Hernaez, M. & Kalsotra, A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res.31, 576–591 (2021). 10.1101/gr.267013.120 PubMed DOI PMC
Moya, I. M. et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science366, 1029–1034 (2019). 10.1126/science.aaw9886 PubMed DOI
Tabariès, S. & Siegel, P. M. The role of claudins in cancer metastasis. Oncogene36, 1176–1190 (2017). 10.1038/onc.2016.289 PubMed DOI
Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun.8, 15178 (2017). 10.1038/ncomms15178 PubMed DOI PMC
Sohlenius-Sternbeck, A.-K. Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol. In Vitro20, 1582–1586 (2006). 10.1016/j.tiv.2006.06.003 PubMed DOI
Wu, L. et al. Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors. Preprint at bioRxiv10.1101/2021.10.21.465135 (2021).
Munir, H. et al. Stromal-driven and amyloid β-dependent induction of neutrophil extracellular traps modulates tumor growth. Nat. Commun.12, 683 (2021). 10.1038/s41467-021-20982-2 PubMed DOI PMC
Zhou, J., Ji, Q. & Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res.40, 328 (2021). 10.1186/s13046-021-02130-2 PubMed DOI PMC
Tavora, B. et al. Tumoural activation of TLR3–SLIT2 axis in endothelium drives metastasis. Nature586, 299–304 (2020). 10.1038/s41586-020-2774-y PubMed DOI PMC
Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer1, 28–45 (2020). 10.1038/s43018-019-0006-x PubMed DOI PMC
Lee, H. O., Hong, Y., Etlioglu, H. E., Cho, Y. B. & Pomella, V. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nature52, 594–603 (2020). PubMed
Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol.16, e9682 (2020). 10.15252/msb.20209682 PubMed DOI PMC
Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell185, 563–575 (2022). 10.1016/j.cell.2022.01.003 PubMed DOI PMC
Wang, F. et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci. Adv.9, eadf5464 (2023). 10.1126/sciadv.adf5464 PubMed DOI PMC
Che, L.-H. et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov.7, 80 (2021). 10.1038/s41421-021-00312-y PubMed DOI PMC
Xia, J. et al. Semaphorin-plexin signaling controls mitotic spindle orientation during epithelial morphogenesis and repair. Dev. Cell33, 299–313 (2015). 10.1016/j.devcel.2015.02.001 PubMed DOI
Deng, S. et al. Plexin-B2, but not plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo. J. Neurosci.27, 6333–6347 (2007). 10.1523/JNEUROSCI.5381-06.2007 PubMed DOI PMC
Junqueira Alves, C., Yotoko, K., Zou, H. & Friedel, R. H. Origin and evolution of plexins, semaphorins, and Met receptor tyrosine kinases. Sci. Rep.9, 1970 (2019). 10.1038/s41598-019-38512-y PubMed DOI PMC
Junqueira Alves, C. et al. Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nat. Commun.12, 6019 (2021). 10.1038/s41467-021-26296-7 PubMed DOI PMC
Kumanogoh, A. & Kikutani, H. Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat. Rev. Immunol.13, 802–814 (2013). 10.1038/nri3545 PubMed DOI
Varga, J. et al. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J. Exp. Med.217, e20191515 (2020). 10.1084/jem.20191515 PubMed DOI PMC
Zhao, W. et al. Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene23, 395–402 (2004). 10.1038/sj.onc.1207067 PubMed DOI PMC
Subbalakshmi, A. R. et al. KLF4 induces mesenchymal-epithelial transition (MET) by suppressing multiple EMT-inducing transcription factors. Cancers13, 5135 (2021). 10.3390/cancers13205135 PubMed DOI PMC
Agbo, K. C. et al. Loss of the Krüppel-like factor 4 tumor suppressor is associated with epithelial-mesenchymal transition in colorectal cancer. J. Cancer Metastasis Treat.5, 77 (2019). PubMed PMC
Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell22, 709–724 (2012). 10.1016/j.ccr.2012.10.012 PubMed DOI
Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell22, 725–736 (2012). 10.1016/j.ccr.2012.09.022 PubMed DOI PMC
Reichert, M. et al. Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Dev. Cell45, 696–711 (2018). 10.1016/j.devcel.2018.05.025 PubMed DOI PMC
Zhou, Z. et al. A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted therapy. EBioMedicine44, 98–111 (2019). 10.1016/j.ebiom.2019.05.011 PubMed DOI PMC
Subbalakshmi, A. R. et al. The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition. J. Biol. Eng.17, 17 (2023). 10.1186/s13036-023-00333-z PubMed DOI PMC
Yang, Z., Wu, D., Chen, Y., Min, Z. & Quan, Y. GRHL2 inhibits colorectal cancer progression and metastasis via oppressing epithelial-mesenchymal transition. Cancer Biol. Ther.20, 1195–1205 (2019). 10.1080/15384047.2019.1599664 PubMed DOI PMC
Gurrapu, S. et al. Reverse signaling by semaphorin 4C elicits SMAD1/5- and ID1/3-dependent invasive reprogramming in cancer cells. Sci. Signal.12, eaav2041 (2019). 10.1126/scisignal.aav2041 PubMed DOI
Smeester, B. A. et al. SEMA4C is a novel target to limit osteosarcoma growth, progression, and metastasis. Oncogene39, 1049–1062 (2020). 10.1038/s41388-019-1041-x PubMed DOI
Zhou, H. et al. Recruitment of Tiam1 to semaphorin 4D activates Rac and enhances proliferation, invasion, and metastasis in oral squamous cell carcinoma. Neoplasia19, 65–74 (2017). 10.1016/j.neo.2016.12.004 PubMed DOI PMC
Sun, T. et al. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib. J. Cell Biol.216, 199–215 (2017). 10.1083/jcb.201602002 PubMed DOI PMC
Uhlén, M. et al. Tissue-based map of the human proteome. Science347, 1260419 (2015). 10.1126/science.1260419 PubMed DOI
Cañellas-Socias, A. et al. Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature611, 603–613 (2022). 10.1038/s41586-022-05402-9 PubMed DOI PMC
Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet.54, 963–975 (2022). 10.1038/s41588-022-01100-4 PubMed DOI PMC
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature487, 330–337 (2012). 10.1038/nature11252 PubMed DOI PMC
Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature540, 552–558 (2016). 10.1038/nature20785 PubMed DOI PMC
Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet.51, 1113–1122 (2019). 10.1038/s41588-019-0423-x PubMed DOI PMC
Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature566, 553–557 (2019). 10.1038/s41586-019-0915-y PubMed DOI
Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature594, 566–571 (2021). 10.1038/s41586-021-03614-z PubMed DOI
Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell185, 1694–1708 (2022). 10.1016/j.cell.2022.03.033 PubMed DOI PMC
Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science361, eaao4227 (2018). 10.1126/science.aao4227 PubMed DOI PMC
Kovacsics, D. & Raper, J. Transient expression of proteins by hydrodynamic gene delivery in mice. J. Vis. Exp. 10.3791/51481 (2014). PubMed PMC
Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A. & Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest.95, 1789–1797 (1995). 10.1172/JCI117857 PubMed DOI PMC
Roper, J. et al. Colonoscopy-based colorectal cancer modeling in mice with CRISPR–Cas9 genome editing and organoid transplantation. Nat. Protoc.13, 217–234 (2018). 10.1038/nprot.2017.136 PubMed DOI PMC
Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun.9, 5416 (2018). 10.1038/s41467-018-07901-8 PubMed DOI PMC
Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc.12, 828–863 (2017). 10.1038/nprot.2017.016 PubMed DOI PMC
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J.17, 10–12 (2011).10.14806/ej.17.1.200 DOI
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). 10.1038/nmeth.1923 PubMed DOI PMC
Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics35, 421–432 (2019). 10.1093/bioinformatics/bty648 PubMed DOI PMC
Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc.14, 756–780 (2019). 10.1038/s41596-018-0113-7 PubMed DOI PMC
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol.15, 554 (2014). 10.1186/s13059-014-0554-4 PubMed DOI PMC
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res.49, e50 (2021). 10.1093/nar/gkab043 PubMed DOI PMC
Stuart, T. et al. Comprehensive integration of single-cell data. Cell177, 1888–1902 (2019). 10.1016/j.cell.2019.05.031 PubMed DOI PMC
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods17, 159–162 (2020). 10.1038/s41592-019-0667-5 PubMed DOI
Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet.53, 1698–1711 (2021). 10.1038/s41588-021-00972-2 PubMed DOI PMC
Shao, X. et al. CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice. Brief. Bioinform.22, bbaa269 (2021). 10.1093/bib/bbaa269 PubMed DOI
Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv.7, eabh2169 (2021). PubMed PMC
Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science340, 1190–1194 (2013). 10.1126/science.1234852 PubMed DOI
de Sousa e Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature543, 676–680 (2017). PubMed
Ombrato, L. et al. Generation of neighbor-labeling cells to study intercellular interactions in vivo. Nat. Protoc.16, 872–892 (2021). 10.1038/s41596-020-00438-5 PubMed DOI PMC
Fink, S. et al. A simple approach for multi-targeted shRNA-mediated inducible knockdowns using Sleeping Beauty vectors. PLoS ONE13, e0205585 (2018). 10.1371/journal.pone.0205585 PubMed DOI PMC
Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods16, 887–893 (2019). 10.1038/s41592-019-0508-6 PubMed DOI
DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol.39, 94–104 (2021). 10.1038/s41587-020-0600-6 PubMed DOI PMC
Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol.36, 239–241 (2018). 10.1038/nbt.4061 PubMed DOI
Jenkins, M. H. et al. Multiple murine BRaf(V600E) melanoma cell lines with sensitivity to PLX4032. Pigment Cell Melanoma Res.27, 495–501 (2014). 10.1111/pcmr.12220 PubMed DOI PMC
Charni-Natan, M. & Goldstein, I. Protocol for primary mouse hepatocyte isolation. STAR Protoc.1, 100086 (2020). 10.1016/j.xpro.2020.100086 PubMed DOI PMC
Khandelia, P., Yap, K. & Makeyev, E. V. Streamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cells. Proc. Natl Acad. Sci. USA108, 12799–12804 (2011). 10.1073/pnas.1103532108 PubMed DOI PMC
Arora, A. et al. High-throughput identification of RNA localization elements in neuronal cells. Nucleic Acids Res.50, 10626–10642 (2022). 10.1093/nar/gkac763 PubMed DOI PMC
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol.34, 184–191 (2016). 10.1038/nbt.3437 PubMed DOI PMC
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep.7, 16878 (2017). 10.1038/s41598-017-17204-5 PubMed DOI PMC
Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol.14, 106–114 (2011). 10.1038/ncb2384 PubMed DOI PMC
Imbert, A. et al. FISH-quant v2: a scalable and modular tool for smFISH image analysis. RNA28, 786–795 (2022). 10.1261/rna.079073.121 PubMed DOI PMC
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods19, 1634–1641 (2022). PubMed PMC
Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell185, 379–396 (2022). 10.1016/j.cell.2021.12.018 PubMed DOI PMC
Handler, K. et al. Fragment-sequencing unveils local tissue microenvironments at single-cell resolution. Nat. Commun.14, 7775 (2023). 10.1038/s41467-023-43005-8 PubMed DOI PMC
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the [Image: see text] method. Methods25, 402–408 (2001). PubMed
Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun.10.1038/s41467-018-05347-6 (2018). PubMed PMC
Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformaticshttp://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140 (2010). 10.1093/bioinformatics/btp616 PubMed DOI PMC
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv10.1101/060012 (2016).
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics27, 1739–1740 (2011). 10.1093/bioinformatics/btr260 PubMed DOI PMC
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics14, 128 (2013). 10.1186/1471-2105-14-128 PubMed DOI PMC
Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature562, 367–372 (2018). 10.1038/s41586-018-0590-4 PubMed DOI PMC
Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics26, 2438–2444 (2010). 10.1093/bioinformatics/btq466 PubMed DOI PMC
Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods18, 1333–1341 (2021). 10.1038/s41592-021-01282-5 PubMed DOI PMC
Yin, Y. decontX. Bioconductor10.18129/B9.BIOC.DECONTX (2023).
Tran, A. N., Dussaq, A. M., Kennell Jr, T., Willey, C. D. & Hjelmeland, A. B. HPAanalyze: an R package that facilitates the retrieval and analysis of the Human Protein Atlas data. BMC Bioinform.20, 463 (2019).10.1186/s12859-019-3059-z PubMed DOI PMC
Borrelli, C. et al. Data for ‘In vivo interaction screening reveals liver-derived constraints to metastasis’ Zenodo10.5281/zenodo.7737590 (2024). PubMed PMC