The current and upcoming era of radiomics in phaeochromocytoma and paraganglioma
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
39227277
DOI
10.1016/j.beem.2024.101923
PII: S1521-690X(24)00077-0
Knihovny.cz E-zdroje
- Klíčová slova
- deep learning, diagnostic imaging, machine learning, paraganglioma, pheochromocytoma, radiomics, texture analysis,
- MeSH
- diferenciální diagnóza MeSH
- feochromocytom * diagnostické zobrazování MeSH
- lidé MeSH
- nádory nadledvin * diagnostické zobrazování MeSH
- paragangliom * diagnostické zobrazování MeSH
- počítačová rentgenová tomografie * metody trendy MeSH
- počítačové zpracování obrazu metody MeSH
- radiomika MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The topic of the diagnosis of phaeochromocytomas remains highly relevant because of advances in laboratory diagnostics, genetics, and therapeutic options and also the development of imaging methods. Computed tomography still represents an essential tool in clinical practice, especially in incidentally discovered adrenal masses; it allows morphological evaluation, including size, shape, necrosis, and unenhanced attenuation. More advanced post-processing tools to analyse digital images, such as texture analysis and radiomics, are currently being studied. Radiomic features utilise digital image pixels to calculate parameters and relations undetectable by the human eye. On the other hand, the amount of radiomic data requires massive computer capacity. Radiomics, together with machine learning and artificial intelligence in general, has the potential to improve not only the differential diagnosis but also the prediction of complications and therapy outcomes of phaeochromocytomas in the future. Currently, the potential of radiomics and machine learning does not match expectations and awaits its fulfilment.
Citace poskytuje Crossref.org