Vibrio cholerae serogroup O5 was responsible for the outbreak of gastroenteritis in Czechoslovakia in 1965

. 2024 Sep ; 10 (9) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu historické články, úvodníky

Perzistentní odkaz   https://www.medvik.cz/link/pmid39235832

Several authors have attributed the explosive outbreak of gastroenteritis that occurred in Czechoslovakia in 1965 to a toxigenic strain of Vibrio cholerae serogroup O37 based on unverified metadata associated with three particular strains from the American Type Culture Collection. Here, by sequencing the original strain preserved at the Czech National Collection of Type Cultures since 1966, we show that the strain responsible for this outbreak was actually a V. cholerae O5 that lacks the genes encoding the cholera toxin, the toxin-coregulated pilus protein and Vibrio pathogenicity islands present in V. cholerae O37 strains.

Zobrazit více v PubMed

Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, et al. Extended serotyping scheme for Vibrio cholerae. Curr Microbiol. 1994;28:175–178. doi: 10.1007/BF01571061. DOI

Shimada T, Sakazaki R. Additional serovars and inter-O antigenic relationships of Vibrio cholerae. Jpn J Med Sci Biol. 1977;30:275–277. doi: 10.7883/yoken1952.30.275. PubMed DOI

Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. The Lancet. 2017;390:1539–1549. doi: 10.1016/S0140-6736(17)30559-7. PubMed DOI

Aldová E, Láznicková K, Stĕpánková E, Lietava J. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J Infect Dis. 1968;118:25–31. doi: 10.1093/infdis/118.1.25. PubMed DOI

Cheasty T, Saif B, Threlfall E. V cholerae non-01: implications for man? The Lancet . 1999;354:89–90. doi: 10.1016/S0140-6736(99)00151-8. PubMed DOI

Rahaman MH, Islam T, Colwell RR, Alam M. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol. 2015;6:1040. doi: 10.3389/fmicb.2015.01040. PubMed DOI PMC

Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, et al. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A. 1998;95:3134–3139. doi: 10.1073/pnas.95.6.3134. PubMed DOI PMC

Stine OC, Sozhamannan S, Gou Q, Zheng S, Morris JG, Jr, et al. Phylogeny of Vibrio cholerae based on recA sequence. Infect Immun. 2000;68:7180–7185. doi: 10.1128/IAI.68.12.7180-7185.2000. PubMed DOI PMC

Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, et al. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One. 2013;8:e65342. doi: 10.1371/journal.pone.0065342. PubMed DOI PMC

Dorman MJ, Thomson NR. Vibrio cholerae O37: one of the exceptions that prove the rule. Microb Genom. 2023;9:mgen000980. doi: 10.1099/mgen.0.000980. PubMed DOI PMC

Felsenfeld O, Stegherr-Barrios A, Aldová E, Holmes J, Parrott MW. In vitro and in vivo studies of streptomycin-dependent cholera vibrios. Appl Microbiol. 1970;19:463–469. doi: 10.1128/am.19.3.463-469.1970. PubMed DOI PMC

The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 14.0. 2024. http://www.eucast.org

Clinical and Laboratory Standards Institute . Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline. 3rd (M45Ed3E) Wayne (PA):the Institute:

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI

Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLOS Comput Biol. 2022;18:e1009802. doi: 10.1371/journal.pcbi.1009802. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Murase K, Arakawa E, Izumiya H, Iguchi A, Takemura T, et al. Genomic dissection of the Vibrio cholerae O-serogroup global reference strains: reassessing our view of diversity and plasticity between two chromosomes. Microb Genom. 2022;8:mgen000860. doi: 10.1099/mgen.0.000860. PubMed DOI PMC

Weill F-X, Domman D, Njamkepo E, Tarr C, Rauzier J, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358:785–789. doi: 10.1126/science.aad5901. PubMed DOI

Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC

Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, et al. In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Weill F-X, Domman D, Njamkepo E, Almesbahi AA, Naji M, et al. Genomic insights into the 2016–2017 cholera epidemic in Yemen. Nature. 2019;565:230–233. doi: 10.1038/s41586-018-0818-3. PubMed DOI PMC

Dorman MJ, Domman D, Poklepovich T, Tolley C, Zolezzi G, et al. Genomics of the argentinian cholera epidemic elucidate the contrasting dynamics of epidemic and endemic Vibrio cholerae. Nat Commun. 2020;11:4918. doi: 10.1038/s41467-020-18647-7. PubMed DOI PMC

Drebes Dörr NC, Proutière A, Jaskólska M, Stutzmann S, Bader L, et al. Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae. ISME J. 2022;16:1868–1872. doi: 10.1038/s41396-022-01234-7. PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC

Sakazaki R, Gomez CZ, Sebald M. Taxonomical studies of the so-called NAG Vibrios. Jpn J Med Sci Biol. 1967;20:265–280. doi: 10.7883/yoken1952.20.265. DOI

Sakazaki R, Tamura K, Gomez CZ, Sen R. Serological studies on the cholera group of vibrios. Jpn J Med Sci Biol. 1970;23:13–20. doi: 10.7883/yoken1952.23.13. PubMed DOI

Boyd EF, Waldor MK. Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. Microbiology. 2002;148:1655–1666. doi: 10.1099/00221287-148-6-1655. PubMed DOI

Chun J, Huq A, Colwell RR. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl Environ Microbiol. 1999;65:2202–2208. doi: 10.1128/AEM.65.5.2202-2208.1999. PubMed DOI PMC

World Health Organization Outbreak of gastro-enteritis by non agglutinable (NAG) vibrios = épidémie de gastro-entérite due a des vibrions non agglutinables. Wkly Epidemiol Rec. 1969;44:10.

Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA. 2009;106:15442–15447. doi: 10.1073/pnas.0907787106. PubMed DOI PMC

Hounmanou YMG, Sit B, Fakoya B, Waldor MK, Dalsgaard A. Genomic and phenotypic insights for toxigenic clinical Vibrio cholerae O141. Emerg Infect Dis. 2022;28:617–624. doi: 10.3201/eid2803.210715. PubMed DOI PMC

Domman D, Quilici M-L, Dorman MJ, Njamkepo E, Mutreja A, et al. Integrated view of Vibrio cholerae in the Americas. Science. 2017;358:789–793. doi: 10.1126/science.aao2136. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...