Vibrio cholerae serogroup O5 was responsible for the outbreak of gastroenteritis in Czechoslovakia in 1965
Language English Country England, Great Britain Media print
Document type Historical Article, Editorial
PubMed
39235832
PubMed Central
PMC11561587
DOI
10.1099/mgen.0.001282
Knihovny.cz E-resources
- Keywords
- 1965, Czechoslovakia, O5, Vibrio cholerae, gastroenteritis,
- MeSH
- Cholera * epidemiology microbiology history MeSH
- Cholera Toxin genetics MeSH
- Disease Outbreaks * MeSH
- Gastroenteritis * microbiology epidemiology history MeSH
- Genomic Islands MeSH
- Humans MeSH
- Serogroup MeSH
- Vibrio cholerae * genetics classification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Historical Article MeSH
- Editorial MeSH
- Geographicals
- Czechoslovakia MeSH
- Names of Substances
- Cholera Toxin MeSH
Several authors have attributed the explosive outbreak of gastroenteritis that occurred in Czechoslovakia in 1965 to a toxigenic strain of Vibrio cholerae serogroup O37 based on unverified metadata associated with three particular strains from the American Type Culture Collection. Here, by sequencing the original strain preserved at the Czech National Collection of Type Cultures since 1966, we show that the strain responsible for this outbreak was actually a V. cholerae O5 that lacks the genes encoding the cholera toxin, the toxin-coregulated pilus protein and Vibrio pathogenicity islands present in V. cholerae O37 strains.
ATCC 10801 University Boulevard Manassas VA 20110 USA
Czech National Collection of Type Cultures National Institute of Public Health Prague Czech Republic
See more in PubMed
Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, et al. Extended serotyping scheme for Vibrio cholerae. Curr Microbiol. 1994;28:175–178. doi: 10.1007/BF01571061. DOI
Shimada T, Sakazaki R. Additional serovars and inter-O antigenic relationships of Vibrio cholerae. Jpn J Med Sci Biol. 1977;30:275–277. doi: 10.7883/yoken1952.30.275. PubMed DOI
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. The Lancet. 2017;390:1539–1549. doi: 10.1016/S0140-6736(17)30559-7. PubMed DOI
Aldová E, Láznicková K, Stĕpánková E, Lietava J. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J Infect Dis. 1968;118:25–31. doi: 10.1093/infdis/118.1.25. PubMed DOI
Cheasty T, Saif B, Threlfall E. V cholerae non-01: implications for man? The Lancet . 1999;354:89–90. doi: 10.1016/S0140-6736(99)00151-8. PubMed DOI
Rahaman MH, Islam T, Colwell RR, Alam M. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol. 2015;6:1040. doi: 10.3389/fmicb.2015.01040. PubMed DOI PMC
Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, et al. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A. 1998;95:3134–3139. doi: 10.1073/pnas.95.6.3134. PubMed DOI PMC
Stine OC, Sozhamannan S, Gou Q, Zheng S, Morris JG, Jr, et al. Phylogeny of Vibrio cholerae based on recA sequence. Infect Immun. 2000;68:7180–7185. doi: 10.1128/IAI.68.12.7180-7185.2000. PubMed DOI PMC
Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, et al. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One. 2013;8:e65342. doi: 10.1371/journal.pone.0065342. PubMed DOI PMC
Dorman MJ, Thomson NR. Vibrio cholerae O37: one of the exceptions that prove the rule. Microb Genom. 2023;9:mgen000980. doi: 10.1099/mgen.0.000980. PubMed DOI PMC
Felsenfeld O, Stegherr-Barrios A, Aldová E, Holmes J, Parrott MW. In vitro and in vivo studies of streptomycin-dependent cholera vibrios. Appl Microbiol. 1970;19:463–469. doi: 10.1128/am.19.3.463-469.1970. PubMed DOI PMC
The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 14.0. 2024. http://www.eucast.org
Clinical and Laboratory Standards Institute . Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline. 3rd (M45Ed3E) Wayne (PA):the Institute:
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLOS Comput Biol. 2022;18:e1009802. doi: 10.1371/journal.pcbi.1009802. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Murase K, Arakawa E, Izumiya H, Iguchi A, Takemura T, et al. Genomic dissection of the Vibrio cholerae O-serogroup global reference strains: reassessing our view of diversity and plasticity between two chromosomes. Microb Genom. 2022;8:mgen000860. doi: 10.1099/mgen.0.000860. PubMed DOI PMC
Weill F-X, Domman D, Njamkepo E, Tarr C, Rauzier J, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358:785–789. doi: 10.1126/science.aad5901. PubMed DOI
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, et al. In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Weill F-X, Domman D, Njamkepo E, Almesbahi AA, Naji M, et al. Genomic insights into the 2016–2017 cholera epidemic in Yemen. Nature. 2019;565:230–233. doi: 10.1038/s41586-018-0818-3. PubMed DOI PMC
Dorman MJ, Domman D, Poklepovich T, Tolley C, Zolezzi G, et al. Genomics of the argentinian cholera epidemic elucidate the contrasting dynamics of epidemic and endemic Vibrio cholerae. Nat Commun. 2020;11:4918. doi: 10.1038/s41467-020-18647-7. PubMed DOI PMC
Drebes Dörr NC, Proutière A, Jaskólska M, Stutzmann S, Bader L, et al. Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae. ISME J. 2022;16:1868–1872. doi: 10.1038/s41396-022-01234-7. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Sakazaki R, Gomez CZ, Sebald M. Taxonomical studies of the so-called NAG Vibrios. Jpn J Med Sci Biol. 1967;20:265–280. doi: 10.7883/yoken1952.20.265. DOI
Sakazaki R, Tamura K, Gomez CZ, Sen R. Serological studies on the cholera group of vibrios. Jpn J Med Sci Biol. 1970;23:13–20. doi: 10.7883/yoken1952.23.13. PubMed DOI
Boyd EF, Waldor MK. Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. Microbiology. 2002;148:1655–1666. doi: 10.1099/00221287-148-6-1655. PubMed DOI
Chun J, Huq A, Colwell RR. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl Environ Microbiol. 1999;65:2202–2208. doi: 10.1128/AEM.65.5.2202-2208.1999. PubMed DOI PMC
World Health Organization Outbreak of gastro-enteritis by non agglutinable (NAG) vibrios = épidémie de gastro-entérite due a des vibrions non agglutinables. Wkly Epidemiol Rec. 1969;44:10.
Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA. 2009;106:15442–15447. doi: 10.1073/pnas.0907787106. PubMed DOI PMC
Hounmanou YMG, Sit B, Fakoya B, Waldor MK, Dalsgaard A. Genomic and phenotypic insights for toxigenic clinical Vibrio cholerae O141. Emerg Infect Dis. 2022;28:617–624. doi: 10.3201/eid2803.210715. PubMed DOI PMC
Domman D, Quilici M-L, Dorman MJ, Njamkepo E, Mutreja A, et al. Integrated view of Vibrio cholerae in the Americas. Science. 2017;358:789–793. doi: 10.1126/science.aao2136. PubMed DOI