The Role of 11-Oxygenated Androgens and Endocrine Disruptors in Androgen Excess Disorders in Women

. 2024 Sep 07 ; 25 (17) : . [epub] 20240907

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39273637

Grantová podpora
Institute of Endocrinology EÚ, 00023761. Ministry of Health of the Czech Republic - DRO

Polycystic ovary syndrome (PCOS) and idiopathic hirsutism (IH) are androgen excess disorders requiring the determination of classic androgen levels for diagnosis. 11-oxygenated androgens have high androgenic potential, yet their clinical value in those disorders is not clear. Additionally, the role of endocrine disruptors (EDs), particularly in IH, remains understudied. We analyzed 25 steroids and 18 EDs in plasma samples from women with IH, PCOS, and controls using LC-MS/MS. Cytokine levels and metabolic parameters were assessed. Comparisons included non-obese women with PCOS (n = 10), women with IH (n = 12) and controls (n = 20), and non-obese versus obese women with PCOS (n = 9). Higher levels of 11-oxygenated androgens were observed in women with PCOS compared to those with IH, but not controls. Conversely, 11-oxygenated androgen levels were lower in women with IH compared to controls. Cytokine levels did not differ between women with IH and controls. Bisphenol A (BPA) levels were higher in obese women with PCOS compared to non-obese women with PCOS. Bisphenol S occurrence was higher in women with PCOS (90%) compared to controls (65%) and IH (50%). Significant correlations were found between androgens (11-ketotestosterone, androstenedione, testosterone) and insulin and HOMA-IR, as well as between immunomodulatory 7-oxygenated metabolites of DHEA and nine interleukins. Our data confirms that PCOS is a multiendocrine gland disorder. Higher BPA levels in obese women might exacerbate metabolic abnormalities. IH was not confirmed as an inflammatory state, and no differences in BPA levels suggest BPA does not play a role in IH pathogenesis.

Zobrazit více v PubMed

Yildiz B.O. Diagnosis of hyperandrogenism: Clinical criteria. Best Pr. Res. Clin. Endocrinol. Metab. 2006;20:167–176. doi: 10.1016/j.beem.2006.02.004. PubMed DOI

Dimakopoulou A., A Clarke S., Jayasena C.N. Screening for Adverse Metabolic Consequences in Women with Idiopathic Hirsutism—Is it Relevant? J. Clin. Endocrinol. Metab. 2023;108:e38–e39. doi: 10.1210/clinem/dgac652. PubMed DOI

Azziz R., Sanchez L.A., Knochenhauer E.S., Moran C., Lazenby J., Stephens K.C., Taylor K., Boots L.R. Androgen excess in women: Experience with over 1000 consecutive patients. J. Clin. Endocrinol. Metab. 2004;89:453–462. doi: 10.1210/jc.2003-031122. PubMed DOI

Carmina E., Rosato F., Jannì A., Rizzo M., Longo R.A. Relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J. Clin. Endocrinol. Metab. 2006;91:2–6. doi: 10.1210/jc.2005-1457. PubMed DOI

Storbeck K.-H., Bloem L.M., Africander D., Schloms L., Swart P., Swart A.C. 11β-Hydroxydihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic activity: A putative role in castration resistant prostate cancer? Mol. Cell. Endocrinol. 2013;377:135–146. doi: 10.1016/j.mce.2013.07.006. PubMed DOI

O’reilly M.W., Kempegowda P., Jenkinson C., Taylor A.E., Quanson J.L., Storbeck K.-H., Arlt W. 11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2017;102:840–848. doi: 10.1210/jc.2016-3285. PubMed DOI PMC

Yoshida T., Matsuzaki T., Miyado M., Saito K., Iwasa T., Matsubara Y., Ogata T., Irahara M., Fukami M. 11-oxygenated C19 steroids as circulating androgens in women with polycystic ovary syndrome. Endocr. J. 2018;65:979–990. doi: 10.1507/endocrj.EJ18-0212. PubMed DOI

Aboeldalyl S., James C., Seyam E., Ibrahim E.M., Shawki H.E.-D., Amer S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021;22:2734. doi: 10.3390/ijms22052734. PubMed DOI PMC

Benson S., Janssen O., Hahn S., Tan S., Dietz T., Mann K., Pleger K., Schedlowski M., Arck P., Elsenbruch S. Obesity, depression, and chronic low-grade inflammation in women with polycystic ovary syndrome. Brain Behav. Immun. 2008;22:177–184. doi: 10.1016/j.bbi.2007.07.003. PubMed DOI

Rudnicka E., Suchta K., Grymowicz M., Calik-Ksepka A., Smolarczyk K., Duszewska A.M., Smolarczyk R., Meczekalski B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021;22:3789. doi: 10.3390/ijms22073789. PubMed DOI PMC

Zhou Y., Wang X., Guo S., Li R., Li Y., Yu Y., Liu T. Correlation between chronic low-grade inflammation and glucose and lipid metabolism indicators in polycystic ovary syndrome. Gynecol. Endocrinol. 2024;40:2302402. doi: 10.1080/09513590.2024.2302402. PubMed DOI

Šimková M., Vítků J., Kolátorová L., Vrbíková J., Vosátková M., Včelák J., Dušková M. Endocrine Disruptors, Obesity, and Cytokines—How Relevant Are They to PCOS? Physiol. Res. 2020;69:S279–S293. doi: 10.33549/physiolres.934521. PubMed DOI PMC

Escobar-Morreale H.F., Luque-Ramírez M., González F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011;95:1048–1058.e2. doi: 10.1016/j.fertnstert.2010.11.036. PubMed DOI PMC

Orio F., Palomba S., Cascella T., Di Biase S., Manguso F., Tauchmanovà L., Nardo L.G., Labella D., Savastano S., Russo T., et al. The increase of leukocytes as a new putative marker of low-grade chronic inflammation and early cardiovascular risk in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005;90:2–5. doi: 10.1210/jc.2004-0628. PubMed DOI

Herlihy A.C., Kelly R.E., Hogan J.L., O’Connor N., Farah N., Turner M.J. Polycystic ovary syndrome and the peripheral blood white cell count. J. Obstet. Gynaecol. 2011;31:242–244. doi: 10.3109/01443615.2011.553693. PubMed DOI

Lafaye P., Chmielewski V., Nato F., Mazié J.-C., Morfin R. The 7α-hydroxysteroids produced in human tonsils enhance the immune response to tetanus toxoid and Bordetella pertussis antigens. Biochim. Biophys. Acta. 1999;1472:222–231. doi: 10.1016/S0304-4165(99)00124-5. PubMed DOI

Chmielewski V., Drupt F., Morfin R. Dexamethasone-induced apoptosis of mouse thymocytes: Prevention by native 7α-hydroxysteroids. Immunol. Cell Biol. 2000;78:238–246. doi: 10.1046/j.1440-1711.2000.00905.x. PubMed DOI

Stárka L. The Origin of 7α-Hydroxy-Dehydroepiandrosterone and Its Physiological Role: A History of Discoveries. Physiol. Res. 2017;66:S285–S294. doi: 10.33549/physiolres.933717. PubMed DOI

Muller C., Hennebert O., Morfin R. The native anti-glucocorticoid paradigm. J. Steroid Biochem. Mol. Biol. 2006;100:95–105. doi: 10.1016/j.jsbmb.2006.03.001. PubMed DOI

Pelissier M.-A., Trap C., Malewiak M.-I., Morfin R. Antioxidant effects of dehydroepiandrosterone and 7α-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids. 2004;69:137–144. doi: 10.1016/j.steroids.2003.12.006. PubMed DOI

Azziz R., Carmina E., Sawaya M.E. Idiopathic Hirsutism. Endocr. Rev. 2000;21:347–362. doi: 10.1210/edrv.21.4.0401. PubMed DOI

Amiri M., Mahmoudieh L., Sheidaei A., Fallahzadeh A., Tehrani F.R. Insulin resistance and idiopathic hirsutism: A systematic review, meta-analysis, and meta-regression. J. Cosmet. Dermatol. 2022;21:5346–5359. doi: 10.1111/jocd.15070. PubMed DOI

Mahmoudieh L., Amiri M., Rahmati M., Moeini A.S.H., Sarvghadi F., Azizi F., Tehrani F.R. Idiopathic Hirsutism and Metabolic Status: A Population-based Prospective Cohort Study. J. Clin. Endocrinol. Metab. 2022;108:114–123. doi: 10.1210/clinem/dgac538. PubMed DOI

Tosi F., Villani M., Garofalo S., Faccin G., Bonora E., Fiers T., Kaufman J.-M., Moghetti P. Clinical Value of Serum Levels of 11-Oxygenated Metabolites of Testosterone in Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2022;107:e2047–e2055. doi: 10.1210/clinem/dgab920. PubMed DOI

Taylor A.E., Ware M.A., Breslow E., Pyle L., Severn C., Nadeau K.J., Chan C.L., Kelsey M.M., Cree-Green M. 11-Oxyandrogens in Adolescents with Polycystic Ovary Syndrome. J. Endocr. Soc. 2022;6:bvac037. doi: 10.1210/jendso/bvac037. PubMed DOI PMC

Skiba M.A., Bell R.J., Islam R.M., Karim M.N., Davis S.R. Distribution of Body Hair in Young Australian Women and Associations with Serum Androgen Concentrations. J. Clin. Endocrinol. Metab. 2020;105:1186–1195. doi: 10.1210/clinem/dgaa063. PubMed DOI

Diamanti-Kandarakis E., Bourguignon J.-P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC

Maffini M.V., Rubin B.S., Sonnenschein C., Soto A.M. Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol. Cell. Endocrinol. 2006;254–255:179–186. doi: 10.1016/j.mce.2006.04.033. PubMed DOI

Li D.-K., Zhou Z., Miao M., He Y., Wang J., Ferber J., Herrinton L.J., Gao E., Yuan W. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil. Steril. 2011;95:625–630.e4. doi: 10.1016/j.fertnstert.2010.09.026. PubMed DOI

Colborn T. Neurodevelopment and endocrine disruption. Environ. Heal. Perspect. 2004;112:944–949. doi: 10.1289/ehp.6601. PubMed DOI PMC

Heindel J.J., Blumberg B., Cave M., Machtinger R., Mantovani A., Mendez M.A., Nadal A., Palanza P., Panzica G., Sargis R., et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017;68:3–33. doi: 10.1016/j.reprotox.2016.10.001. PubMed DOI PMC

Corti M., Lorenzetti S., Ubaldi A., Zilli R., Marcoccia D. Endocrine Disruptors and Prostate Cancer. Int. J. Mol. Sci. 2022;23:1216. doi: 10.3390/ijms23031216. PubMed DOI PMC

Yilmaz B., Terekeci H., Sandal S., Kelestimur F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020;21:127–147. doi: 10.1007/s11154-019-09521-z. PubMed DOI

Dalamaga M., Kounatidis D., Tsilingiris D., Vallianou N.G., Karampela I., Psallida S., Papavassiliou A.G. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int. J. Mol. Sci. 2024;25:675. doi: 10.3390/ijms25010675. PubMed DOI PMC

Kandaraki E., Chatzigeorgiou A., Livadas S., Palioura E., Economou F., Koutsilieris M., Palimeri S., Panidis D., Diamanti-Kandarakis E. Endocrine Disruptors and Polycystic Ovary Syndrome (PCOS): Elevated Serum Levels of Bisphenol A in Women with PCOS. J. Clin. Endocrinol. Metab. 2011;96:E480–E484. doi: 10.1210/jc.2010-1658. PubMed DOI

Lazúrová Z., Figurová J., Hubková B., Mašlanková J., Lazúrová I. Urinary bisphenol A in women with polycystic ovary syndrome—A possible suppressive effect on steroidogenesis? Horm. Mol. Biol. Clin. Investig. 2021;42:303–309. doi: 10.1515/hmbci-2020-0032. PubMed DOI

Takeuchi T., Tsutsumi O., Ikezuki Y., Takai Y., Taketani Y. Positive Relationship between Androgen and the Endocrine Disruptor, Bisphenol A, in Normal Women and Women with Ovarian Dysfunction. Endocr. J. 2004;51:165–169. doi: 10.1507/endocrj.51.165. PubMed DOI

Urbanetz L.A.M.L., Soares-Junior J.M., Simoes R.d.S., Maciel G.A.R., Baracat M.C.P., Baracat E.C. Bisphenol A and polycystic ovary syndrome in human: A systematic review. Int. J. Gynecol. Obstet. 2024;166:190–203. doi: 10.1002/ijgo.15349. PubMed DOI

Jurewicz J., Majewska J., Berg A., Owczarek K., Zajdel R., Kaleta D., Wasik A., Rachoń D. Serum bisphenol A analogues in women diagnosed with the polycystic ovary syndrome—Is there an association? Environ. Pollut. 2021;272:115962. doi: 10.1016/j.envpol.2020.115962. PubMed DOI

Ma C., Xu H., Zhang X., Feng G., Shi L., Su Y., Yang L., Zhao R., Qiao J. Association of classic and 11-oxygenated androgens with polycystic ovaries and menstrual cycle prolongation in infertile women with PCOS. Clin. Chim. Acta. 2023;547:117440. doi: 10.1016/j.cca.2023.117440. PubMed DOI

Moslehi N., Shab-Bidar S., Tehrani F.R., Mirmiran P., Azizi F. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis. Menopause. 2018;25:1046–1055. doi: 10.1097/GME.0000000000001116. PubMed DOI

Jaswa E.G., Rios J.S., I Cedars M., Santoro N.F., Pavone M.E.G., Legro R.S., Huddleston H.G. Increased Body Mass Index Is Associated with a Nondilutional Reduction in Antimüllerian Hormone. J. Clin. Endocrinol. Metab. 2020;105:3234–3242. doi: 10.1210/clinem/dgaa436. PubMed DOI PMC

Rege J., Turcu A., Kasa-Vubu J.Z., Lerario A.M., Auchus G.C., Auchus R.J., Smith J.M., White P.C., E Rainey W. 11-Ketotestosterone Is the Dominant Circulating Bioactive Androgen During Normal and Premature Adrenarche. J. Clin. Endocrinol. Metab. 2018;103:4589–4598. doi: 10.1210/jc.2018-00736. PubMed DOI PMC

Turcu A.F., Nanba A.T., Chomic R., Upadhyay S.K., Giordano T.J., Shields J.J., Merke D.P., E Rainey W., Auchus R.J. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur. J. Endocrinol. 2016;174:601–609. doi: 10.1530/EJE-15-1181. PubMed DOI PMC

Davio A., Woolcock H., Nanba A.T., Rege J., O’day P., Ren J., Zhao L., Ebina H., Auchus R., E Rainey W., et al. Sex Differences in 11-Oxygenated Androgen Patterns Across Adulthood. J. Clin. Endocrinol. Metab. 2020;105:e2921–e2929. doi: 10.1210/clinem/dgaa343. PubMed DOI PMC

Schiffer L., Kempegowda P., Sitch A.J., E Adaway J., Shaheen F., Ebbehoj A., Singh S., McTaggart M.P., O’reilly M.W., Prete A., et al. Classic and 11-oxygenated androgens in serum and saliva across adulthood: A cross-sectional study analyzing the impact of age, body mass index, and diurnal and menstrual cycle variation. Eur. J. Endocrinol. 2023;188:86–100. doi: 10.1093/ejendo/lvac017. PubMed DOI

Storbeck K.-H., O’reilly M.W. The clinical and biochemical significance of 11-oxygenated androgens in human health and disease. Eur. J. Endocrinol. 2023;188:R98–R109. doi: 10.1093/ejendo/lvad047. PubMed DOI

Erem C. Update on idiopathic hirsutism: Diagnosis and treatment. Acta Clin. Belg. 2013;68:268–274. doi: 10.2143/ACB.3267. PubMed DOI

Yazdi A.S., Ghoreschi K. The Interleukin-1 Family. Adv. Exp. Med. Biol. 2016;941:21–29. doi: 10.1007/978-94-024-0921-5_2. PubMed DOI

A Souza K.L., Gurgul-Convey E., Elsner M., Lenzen S. Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. J. Endocrinol. 2008;197:139–150. doi: 10.1677/JOE-07-0638. PubMed DOI

Loonen A.J. Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain Behav. Immun. Heal. 2023;33:100687. doi: 10.1016/j.bbih.2023.100687. PubMed DOI PMC

Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and anti-gen-specific adaptive immunity. Annu. Rev. Immunol. 1995;13:251–276. doi: 10.1146/annurev.iy.13.040195.001343. PubMed DOI

Zenobia C., Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontology 2000. 2015;69:142–159. doi: 10.1111/prd.12083. PubMed DOI PMC

Bhavsar I., Miller C.S., Al-Sabbagh M. General Methods in Biomarker Research and Their Applications. Springer; Berlin/Heidelberg, Germany: 2015. Macrophage Inflammatory Protein-1 Alpha (MIP-1 alpha)/CCL3: As a Biomarker; pp. 223–249. DOI

Widmer U., Manogue K.R., Cerami A., Sherry B. Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J. Immunol. 1993;150:4996–5012. doi: 10.4049/jimmunol.150.11.4996. PubMed DOI

Luotola K. IL-1 Receptor Antagonist (IL-1Ra) Levels and Management of Metabolic Disorders. Nutrients. 2022;14:3422. doi: 10.3390/nu14163422. PubMed DOI PMC

de Vries J.E. The role of IL-13 and its receptor in allergy and inflammatory responses. J. Allergy Clin. Immunol. 1998;102:165–169. doi: 10.1016/S0091-6749(98)70080-6. PubMed DOI

Taneja V. Sex Hormones Determine Immune Response. Front. Immunol. 2018;9:1931. doi: 10.3389/fimmu.2018.01931. PubMed DOI PMC

Stelzer I.A., Arck P.C. Encyclopedia of Immunobiology. Academic Press; Cambridge, MA, USA: 2016. Immunity and the Endocrine System; pp. 73–85. Volume 5: Physiology and Immune System Dysfunction.

Mihaylova Z., Tsikandelova R., Sanimirov P., Gateva N., Mitev V., Ishkitiev N. Role of PDGF-BB in proliferation, differentiation and maintaining stem cell properties of PDL cells in vitro. Arch. Oral. Biol. 2018;85:19. doi: 10.1016/j.archoralbio.2017.09.019. PubMed DOI

Gao J., Song Y., Huang X., Wang D., Wang H. The expression of platelet-derived growth factor, epidermal growth factor, and insulin-like growth factor-II in patients with polycystic ovary syndrome and its correlation with pregnancy outcomes. Ann. Palliat. Med. 2021;10:5671–5678. doi: 10.21037/apm-21-1003. PubMed DOI

Urbanetz L.A.M.L., Junior J.M.S., Maciel G.A.R., Simões R.d.S., Baracat M.C.P., Baracat E.C. Does bisphenol A (BPA) participates in the pathogenesis of Polycystic Ovary Syndrome (PCOS)? Clinics. 2023;78:100310. doi: 10.1016/j.clinsp.2023.100310. PubMed DOI PMC

Palioura E., Diamanti-Kandarakis E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs) Rev. Endocr. Metab. Disord. 2015;16:365–371. doi: 10.1007/s11154-016-9326-7. PubMed DOI

Wang J., Sun B., Hou M., Pan X., Li X. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int. J. Obes. 2013;37:999–1005. doi: 10.1038/ijo.2012.173. PubMed DOI

Boucher J.G., Boudreau A., Atlas E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr. Diabetes. 2014;4:e102. doi: 10.1038/nutd.2013.43. PubMed DOI PMC

Zhan W., Tang W., Shen X., Xu H., Zhang J. Exposure to bisphenol A and its analogs and polycystic ovarian syndrome in women of childbearing age: A multicenter case-control study. Chemosphere. 2023;313:137463. doi: 10.1016/j.chemosphere.2022.137463. PubMed DOI

Pal S., Sarkar K., Nath P.P., Mondal M., Khatun A., Paul G. Bisphenol S impairs blood functions and induces cardiovascular risks in rats. Toxicol. Rep. 2017;4:560–565. doi: 10.1016/j.toxrep.2017.10.006. PubMed DOI PMC

Šimková M., Kolátorová L., Drašar P., Vítků J. An LC-MS/MS method for the simultaneous quantification of 32 steroids in human plasma. J. Chromatogr. B. 2022;1201–1202:123294. doi: 10.1016/j.jchromb.2022.123294. PubMed DOI

Vitku J., Horackova L., Kolatorova L., Duskova M., Skodova T., Simkova M. Derivatized versus non-derivatized LC-MS/MS techniques for the analysis of estrogens and estrogen-like endocrine disruptors in human plasma. Ecotoxicol. Environ. Saf. 2023;260:115083. doi: 10.1016/j.ecoenv.2023.115083. PubMed DOI

Vitku J., Skodova T., Varausova A., Gadus L., Michnova L., Horackova L., Kolatorova L., Simkova M., Heracek J. Endocrine Disruptors and Estrogens in Human Prostatic Tissue. Physiol. Res. 2023;72((Suppl. S4)):S411–S422. doi: 10.33549/physiolres.935246. PubMed DOI

Dušková M., Kolátorová L., Stárka L. Androgens in women—Critical evaluation of the methods for their determination in diagnostics of endocrine disorders. Physiol. Res. 2018;67((Suppl. S3)):S379–S390. doi: 10.33549/physiolres.933964. PubMed DOI

Sosvorova L.K., Chlupacova T., Vitku J., Vlk M., Heracek J., Starka L., Saman D., Simkova M., Hampl R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta. 2017;174:21–28. doi: 10.1016/j.talanta.2017.05.070. PubMed DOI

Vitku J., Chlupacova T., Sosvorova L., Hampl R., Hill M., Heracek J., Bicikova M., Starka L. Development and validation of LC–MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid. Talanta. 2015;140:62–67. doi: 10.1016/j.talanta.2015.03.013. PubMed DOI

Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. PubMed DOI

Hill M., Hána V., Velíková M., Pařízek A., Kolátorová L., Vítků J., Škodová T., Šimková M., Šimják P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Hornung R.W., Reed L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990;5:46–51. doi: 10.1080/1047322X.1990.10389587. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...