• This record comes from PubMed

In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses

. 2024 Oct 09 ; 29 (19) : . [epub] 20241009

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LM2023037 Ministry of Education Youth and Sports
APVV-21-0016 Slovak Research and Development Agency

The performance of in situ Raman microscopy (IRM) in monitoring the crystallization kinetics of amorphous drugs (griseofulvin and indomethacin) was evaluated using a comparison with the data obtained via differential scanning calorimetry (DSC). IRM was found to accurately and sensitively detect the initial stages of the crystal growth processes, including the rapid glass-crystal surface growth or recrystallization between polymorphic phases, with the reliable localized identification of the particular polymorphs being the main advantage of IRM over DSC. However, from the quantitative point of view, the reproducibility of the IRM measurements was found to be potentially significantly hindered due to inaccurate temperature recording and calibration, variability in the Raman spectra corresponding to the fully amorphous and crystalline phases, and an overly limited number of spectra possible to collect during acceptable experimental timescales because of the applied heating rates. Since theoretical simulations showed that, from the kinetics point of view, the constant density of collected data points per kinetic effect results in the smallest distortions, only the employment of the fast Raman mapping functions could advance the performance of IRM above that of calorimetric measurements.

See more in PubMed

Singh P.S., Lokhande R.S., Kochrekar D.A. A green raman spectroscopic assay method for the quantification of tranexamic acid in pharmaceutical formulations. Int. J. Exp. Res. Rev. 2023;36:415–424. doi: 10.52756/ijerr.2023.v36.036. DOI

Knebl A., Frosch T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on raman spectroscopy. Nanophotonics. 2019;9:19–37.

Kumar A., Singh P., Nanda A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl. Microsc. 2020;50:12. doi: 10.1186/s42649-020-00032-9. PubMed DOI PMC

Song Y., Cai Z., Li Z., Guan G., Jiang Y. Preferential orientation effect of polymers on paracetamol crystallization: Experiments and modeling. Cryst. Growth Des. 2018;18:4987–4997. doi: 10.1021/acs.cgd.8b00346. DOI

Usman A., Ghali U., Işık S. Applications of miniaturized and portable near infrared (nir), fourier transform infrared (ft-ir) and raman spectrometers for the inspection and control of pharmaceutical products. Ank. Univ. Eczaci. Fak. Derg. 2020;44:188–203. doi: 10.33483/jfpau.599077. DOI

Dezena R., Júnior J., Godoy F., Smith T. Confocal raman microscopy: Tablet mapping application for the pharmaceutical industry. Braz. J. Anal. Chem. 2020;7:11–19. doi: 10.30744/brjac.2179-3425.N28-letter. DOI

Sarri B., Simó R., Audier X., Lavastre V., Pénarier G., Alié J., Rigneault H. Discriminating polymorph distributions in pharmaceutical tablets using stimulated raman scattering microscopy. J. Raman Spectrosc. 2019;50:1896–1904. doi: 10.1002/jrs.5743. DOI

Sović I., Lukin S., Meštrović E., Halász I., Porcheddu A., Delogu F., Colacino E. Mechanochemical preparation of active pharmaceutical ingredients monitored by in situ raman spectroscopy. ACS Omega. 2020;5:28663–28672. doi: 10.1021/acsomega.0c03756. PubMed DOI PMC

Zeng J., Zhao W., Yue S. Coherent raman scattering microscopy in oncology pharmacokinetic research. Front. Pharmacol. 2021;12:630167. doi: 10.3389/fphar.2021.630167. PubMed DOI PMC

Krombholz R., Lunter D. A new method for in-situ skin penetration analysis by confocal raman microscopy. Molecules. 2020;25:4222. doi: 10.3390/molecules25184222. PubMed DOI PMC

Zhu Z. Artificial intelligence assisted pharmaceutical crystallization. Cryst. Growth Des. 2024;24:4245–4270. doi: 10.1021/acs.cgd.3c01408. DOI

Savjani K.T., Gajjar A.K., Savjani J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727. PubMed DOI PMC

Shah N., Sandhu H., Choi D.S., Chokshi H., Malick A.W. Amorphous Solid Dispersions: Theory and Practice. Springer; New York, NY, USA: 2014.

Murdande S.B., Pikal M.J., Shanker R.M., Bogner R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol. 2011;16:187–200. doi: 10.3109/10837451003774377. PubMed DOI

Fridgeirsdottir G.A., Harris R., Fischer P.M., Roberts C.J. Support Tools in Formulation Development for Poorly Soluble Drugs. J. Pharm. Sci. 2016;105:2260–2269. doi: 10.1016/j.xphs.2016.05.024. PubMed DOI

Koskela J., Sutton J., Lipiäinen T., Gordon K., Strachan C., Fraser-Miller S. Low- versus mid-frequency raman spectroscopy for in situ analysis of crystallization in slurries. Mol. Pharm. 2022;19:2316–2326. doi: 10.1021/acs.molpharmaceut.2c00126. PubMed DOI PMC

Novakovic D., Isomäki A., Pleunis B., Fraser-Miller S., Peltonen L., Laaksonen T., Strachan C. Understanding dissolution and crystallization with imaging: A surface point of view. Mol. Pharm. 2018;15:5361–5373. doi: 10.1021/acs.molpharmaceut.8b00840. PubMed DOI PMC

Lu B., Kiani D., Taifan W., Barauskas D., Honer K., Zhang L., Baltrušaitis J. Spatially resolved product speciation during struvite synthesis from magnesite (mgco3) particles in ammonium (nh4+) and phosphate (po43–) aqueous solutions. J. Phys. Chem. C. 2019;123:8908–8922. doi: 10.1021/acs.jpcc.8b12252. DOI

Rautaniemi K., Vuorimaa-Laukkanen E., Strachan C., Laaksonen T. Crystallization kinetics of an amorphous pharmaceutical compound using fluorescence-lifetime-imaging microscopy. Mol. Pharm. 2018;15:1964–1971. doi: 10.1021/acs.molpharmaceut.8b00117. PubMed DOI PMC

Wang Y., Wang Y., Cheng J., Chen H., Xu J., Liu Z., Zhang C. Recent advances in the application of characterization techniques for studying physical stability of amorphous pharmaceutical solids. Crystals. 2021;11:1440. doi: 10.3390/cryst11121440. DOI

Zhang J., Shi Q., Guo M., Liu Z., Cai T. Melt crystallization of indomethacin polymorphs in the presence of poly(ethylene oxide): Selective enrichment of the polymer at the crystal–liquid interface. Mol. Pharm. 2020;17:2064–2071. doi: 10.1021/acs.molpharmaceut.0c00220. PubMed DOI

Zhang J., Shi Q., Tao J., Peng Y., Cai T. Impact of polymer enrichment at the crystal–liquid interface on crystallization kinetics of amorphous solid dispersions. Mol. Pharm. 2019;16:1385–1396. doi: 10.1021/acs.molpharmaceut.8b01331. PubMed DOI

Nguyen V., Kim K. Inline monitoring of taltirelin crystallization in batch cooling mode using raman spectroscopy. Chem. Eng. Technol. 2015;38:1059–1067. doi: 10.1002/ceat.201400725. DOI

Goh C., Boyd B., Craig D., Lane M. Profiling of drug crystallization in the skin. Expert Opin. Drug Deliv. 2020;17:1321–1334. doi: 10.1080/17425247.2020.1792440. PubMed DOI

Lee K., Kim K., Ulrich J. In situ monitoring of cocrystallization of salicylic acid–4,4′-dipyridyl in solution using raman spectroscopy. Cryst. Growth Des. 2014;14:2893–2899. doi: 10.1021/cg5001864. DOI

Arnold Y., Imanidis G., Kuentz M. Advancing in-vitro drug precipitation testing: New process monitoring tools and a kinetic nucleation and growth model. J. Pharm. Pharmacol. 2011;63:333–341. doi: 10.1111/j.2042-7158.2010.01228.x. PubMed DOI

Pataki H., Csontos I., Nagy Z., Vajna B., Molnár M., Katona L., Marosi G. Implementation of raman signal feedback to perform controlled crystallization of carvedilol. Org. Process Res. Dev. 2012;17:493–499. doi: 10.1021/op300062t. DOI

Stillhart C., Imanidis G., Kuentz M. Insights into drug precipitation kinetics during in vitro digestion of a lipid-based drug delivery system using in-line raman spectroscopy and mathematical modeling. Pharm. Res. 2013;30:3114–3130. doi: 10.1007/s11095-013-0999-2. PubMed DOI

Wolbert F., Nikoleit K., Steinbrink M., Luebbert C., Sadowski G. The shelf life of asds: 1. measuring the crystallization kinetics at humid conditions. Mol. Pharm. 2022;19:2483–2494. doi: 10.1021/acs.molpharmaceut.2c00188. PubMed DOI

Zhao Y., Yuan J., Ji Z., Wang J., Rohani S. Combined application of in situ fbrm, atr-ftir, and raman on polymorphism transformation monitoring during the cooling crystallization. Ind. Eng. Chem. Res. 2012;51:12530–12536. doi: 10.1021/ie301241h. DOI

Acevedo D., Yang X., Mohammad A., Pavurala N., Wu W., O’Connor T., Cruz C. Raman spectroscopy for monitoring the continuous crystallization of carbamazepine. Org. Process Res. Dev. 2018;22:156–165. doi: 10.1021/acs.oprd.7b00322. DOI

Svoboda R. Extended theoretical analysis of crystallisation kinetics being studied by in situ XRD. Phil. Mag. 2020;100:713–727. doi: 10.1080/14786435.2019.1704901. DOI

Sun Y., Zhu L., Kearns K.L., Ediger M.D., Yu L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA. 2011;108:5990–5995. doi: 10.1073/pnas.1017995108. PubMed DOI PMC

Wu T., Sun Y., Li N., de Villiers M.M., Yu L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI

Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI

Hasebe M., Musumeci D., Powell C.T., Cai T., Gunn E., Zhu L., Yu L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI

Newman A., Zografi G. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Mol. Pharm. 2020;17:1761–1777. doi: 10.1021/acs.molpharmaceut.0c00181. PubMed DOI

Rams-Baron M., Jachowicz R., Boldyreva E., Zhou D., Jamroz W., Paluch M. Amorphous Drugs—Benefits and Challenges. Springer; Berlin/Heidelberg, Germany: 2018.

Qin S., Ting C. Recent progress on crystallization of amorphous pharmaceutical solids. J. China Pharm. Univ. 2017;48:654–662.

Dobreva A., Stoyanov A., Tzuparska S., Gutzow I. Non-steady-state effects in the kinetics of crystallization of organic polymer glass-forming melts. Thermochim. Acta. 1996;280–281:127–151. doi: 10.1016/0040-6031(95)02639-8. DOI

Smith G.P.S., Huff G.S., Gordon K.C. Investigating Crystallinity Using Low Frequency Raman Spectroscopy: Applications in Pharmaceutical Analysis. Spectroscopy. 2016;31:42–50.

Svoboda R. Johnson-Mehl-Avrami kinetics as a universal description of crystallization in glasses? J. Eur. Ceram. Soc. 2024;44:4064–4082. doi: 10.1016/j.jeurceramsoc.2023.12.096. DOI

Johnson W.A., Mehl K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. (Metall) Eng. 1939;135:416–442.

Avrami M. Kinetics of phase change I—General theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI

Avrami M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940;7:212–224. doi: 10.1063/1.1750631. DOI

Avrami M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941;7:177–184. doi: 10.1063/1.1750872. DOI

Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI

Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.

Svoboda R., Kozlová K. Thermo-structural characterization of phase transitions in amorphous griseofulvin: From sub-Tg relaxation and crystal growth to high-temperature decomposition. Molecules. 2024;29:1516. doi: 10.3390/molecules29071516. PubMed DOI PMC

Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI

Naraynaswamy O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI

Moynihan C.T., Easteal A.J., DeBolt M.A., Tucker J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI

Van Duong T., Lüdeker D., Van Bockstal P.-J., De Beer T., Van Humbeeck J., Van den Mooter G. Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Mol. Pharm. 2018;15:1037–1051. doi: 10.1021/acs.molpharmaceut.7b00930. PubMed DOI

Lee A.Y., Erdemir D., Myerson A.S. Crystal Polymorphism in Chemical Process Development. Annu. Rev. Chem. Biomol. Eng. 2011;2:259–280. doi: 10.1146/annurev-chembioeng-061010-114224. PubMed DOI

Surwase S.A., Boetker J., Saville D., Boyd B., Gordon K., Peltonen L., Strachan C.J. Indomethacin: New Polymorphs of an Old Drug. Mol. Pharm. 2013;10:4472–4480. doi: 10.1021/mp400299a. PubMed DOI

Ueda H., Ida Y., Kadota K., Tozuka Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm. 2014;462:115–122. doi: 10.1016/j.ijpharm.2013.12.025. PubMed DOI

Huang C., Ruan S., Cai T., Yu L. Fast surface diffusion and crystallization of amorphous griseofulvin. Phys. Chem. B. 2017;121:9463–9468. doi: 10.1021/acs.jpcb.7b07319. PubMed DOI

Shi Q., Cai T. Fast crystal growth of amorphous griseofulvin: Relations between bulk and surface growth modes. Cryst. Growth Des. 2016;16:3279–3286. doi: 10.1021/acs.cgd.6b00252. DOI

Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2022;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI

Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.

Pang Y., Sun D., Gu Q., Chou K.-C., Wang X., Li Q. Comprehensive Determination of Kinetic Parameters in Solid-State Phase Transitions: An Extended Jonhson-Mehl-Avrami-Kolomogorov Model with Analytical Solutions. Cryst. Growth Des. 2016;16:2404–2415. doi: 10.1021/acs.cgd.6b00187. DOI

Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...