In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LM2023037
Ministry of Education Youth and Sports
APVV-21-0016
Slovak Research and Development Agency
PubMed
39407696
PubMed Central
PMC11478080
DOI
10.3390/molecules29194769
PII: molecules29194769
Knihovny.cz E-resources
- Keywords
- DSC, amorphous drugs, crystal growth kinetics, in situ Raman microscopy,
- Publication type
- Journal Article MeSH
The performance of in situ Raman microscopy (IRM) in monitoring the crystallization kinetics of amorphous drugs (griseofulvin and indomethacin) was evaluated using a comparison with the data obtained via differential scanning calorimetry (DSC). IRM was found to accurately and sensitively detect the initial stages of the crystal growth processes, including the rapid glass-crystal surface growth or recrystallization between polymorphic phases, with the reliable localized identification of the particular polymorphs being the main advantage of IRM over DSC. However, from the quantitative point of view, the reproducibility of the IRM measurements was found to be potentially significantly hindered due to inaccurate temperature recording and calibration, variability in the Raman spectra corresponding to the fully amorphous and crystalline phases, and an overly limited number of spectra possible to collect during acceptable experimental timescales because of the applied heating rates. Since theoretical simulations showed that, from the kinetics point of view, the constant density of collected data points per kinetic effect results in the smallest distortions, only the employment of the fast Raman mapping functions could advance the performance of IRM above that of calorimetric measurements.
See more in PubMed
Singh P.S., Lokhande R.S., Kochrekar D.A. A green raman spectroscopic assay method for the quantification of tranexamic acid in pharmaceutical formulations. Int. J. Exp. Res. Rev. 2023;36:415–424. doi: 10.52756/ijerr.2023.v36.036. DOI
Knebl A., Frosch T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on raman spectroscopy. Nanophotonics. 2019;9:19–37.
Kumar A., Singh P., Nanda A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl. Microsc. 2020;50:12. doi: 10.1186/s42649-020-00032-9. PubMed DOI PMC
Song Y., Cai Z., Li Z., Guan G., Jiang Y. Preferential orientation effect of polymers on paracetamol crystallization: Experiments and modeling. Cryst. Growth Des. 2018;18:4987–4997. doi: 10.1021/acs.cgd.8b00346. DOI
Usman A., Ghali U., Işık S. Applications of miniaturized and portable near infrared (nir), fourier transform infrared (ft-ir) and raman spectrometers for the inspection and control of pharmaceutical products. Ank. Univ. Eczaci. Fak. Derg. 2020;44:188–203. doi: 10.33483/jfpau.599077. DOI
Dezena R., Júnior J., Godoy F., Smith T. Confocal raman microscopy: Tablet mapping application for the pharmaceutical industry. Braz. J. Anal. Chem. 2020;7:11–19. doi: 10.30744/brjac.2179-3425.N28-letter. DOI
Sarri B., Simó R., Audier X., Lavastre V., Pénarier G., Alié J., Rigneault H. Discriminating polymorph distributions in pharmaceutical tablets using stimulated raman scattering microscopy. J. Raman Spectrosc. 2019;50:1896–1904. doi: 10.1002/jrs.5743. DOI
Sović I., Lukin S., Meštrović E., Halász I., Porcheddu A., Delogu F., Colacino E. Mechanochemical preparation of active pharmaceutical ingredients monitored by in situ raman spectroscopy. ACS Omega. 2020;5:28663–28672. doi: 10.1021/acsomega.0c03756. PubMed DOI PMC
Zeng J., Zhao W., Yue S. Coherent raman scattering microscopy in oncology pharmacokinetic research. Front. Pharmacol. 2021;12:630167. doi: 10.3389/fphar.2021.630167. PubMed DOI PMC
Krombholz R., Lunter D. A new method for in-situ skin penetration analysis by confocal raman microscopy. Molecules. 2020;25:4222. doi: 10.3390/molecules25184222. PubMed DOI PMC
Zhu Z. Artificial intelligence assisted pharmaceutical crystallization. Cryst. Growth Des. 2024;24:4245–4270. doi: 10.1021/acs.cgd.3c01408. DOI
Savjani K.T., Gajjar A.K., Savjani J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727. PubMed DOI PMC
Shah N., Sandhu H., Choi D.S., Chokshi H., Malick A.W. Amorphous Solid Dispersions: Theory and Practice. Springer; New York, NY, USA: 2014.
Murdande S.B., Pikal M.J., Shanker R.M., Bogner R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol. 2011;16:187–200. doi: 10.3109/10837451003774377. PubMed DOI
Fridgeirsdottir G.A., Harris R., Fischer P.M., Roberts C.J. Support Tools in Formulation Development for Poorly Soluble Drugs. J. Pharm. Sci. 2016;105:2260–2269. doi: 10.1016/j.xphs.2016.05.024. PubMed DOI
Koskela J., Sutton J., Lipiäinen T., Gordon K., Strachan C., Fraser-Miller S. Low- versus mid-frequency raman spectroscopy for in situ analysis of crystallization in slurries. Mol. Pharm. 2022;19:2316–2326. doi: 10.1021/acs.molpharmaceut.2c00126. PubMed DOI PMC
Novakovic D., Isomäki A., Pleunis B., Fraser-Miller S., Peltonen L., Laaksonen T., Strachan C. Understanding dissolution and crystallization with imaging: A surface point of view. Mol. Pharm. 2018;15:5361–5373. doi: 10.1021/acs.molpharmaceut.8b00840. PubMed DOI PMC
Lu B., Kiani D., Taifan W., Barauskas D., Honer K., Zhang L., Baltrušaitis J. Spatially resolved product speciation during struvite synthesis from magnesite (mgco3) particles in ammonium (nh4+) and phosphate (po43–) aqueous solutions. J. Phys. Chem. C. 2019;123:8908–8922. doi: 10.1021/acs.jpcc.8b12252. DOI
Rautaniemi K., Vuorimaa-Laukkanen E., Strachan C., Laaksonen T. Crystallization kinetics of an amorphous pharmaceutical compound using fluorescence-lifetime-imaging microscopy. Mol. Pharm. 2018;15:1964–1971. doi: 10.1021/acs.molpharmaceut.8b00117. PubMed DOI PMC
Wang Y., Wang Y., Cheng J., Chen H., Xu J., Liu Z., Zhang C. Recent advances in the application of characterization techniques for studying physical stability of amorphous pharmaceutical solids. Crystals. 2021;11:1440. doi: 10.3390/cryst11121440. DOI
Zhang J., Shi Q., Guo M., Liu Z., Cai T. Melt crystallization of indomethacin polymorphs in the presence of poly(ethylene oxide): Selective enrichment of the polymer at the crystal–liquid interface. Mol. Pharm. 2020;17:2064–2071. doi: 10.1021/acs.molpharmaceut.0c00220. PubMed DOI
Zhang J., Shi Q., Tao J., Peng Y., Cai T. Impact of polymer enrichment at the crystal–liquid interface on crystallization kinetics of amorphous solid dispersions. Mol. Pharm. 2019;16:1385–1396. doi: 10.1021/acs.molpharmaceut.8b01331. PubMed DOI
Nguyen V., Kim K. Inline monitoring of taltirelin crystallization in batch cooling mode using raman spectroscopy. Chem. Eng. Technol. 2015;38:1059–1067. doi: 10.1002/ceat.201400725. DOI
Goh C., Boyd B., Craig D., Lane M. Profiling of drug crystallization in the skin. Expert Opin. Drug Deliv. 2020;17:1321–1334. doi: 10.1080/17425247.2020.1792440. PubMed DOI
Lee K., Kim K., Ulrich J. In situ monitoring of cocrystallization of salicylic acid–4,4′-dipyridyl in solution using raman spectroscopy. Cryst. Growth Des. 2014;14:2893–2899. doi: 10.1021/cg5001864. DOI
Arnold Y., Imanidis G., Kuentz M. Advancing in-vitro drug precipitation testing: New process monitoring tools and a kinetic nucleation and growth model. J. Pharm. Pharmacol. 2011;63:333–341. doi: 10.1111/j.2042-7158.2010.01228.x. PubMed DOI
Pataki H., Csontos I., Nagy Z., Vajna B., Molnár M., Katona L., Marosi G. Implementation of raman signal feedback to perform controlled crystallization of carvedilol. Org. Process Res. Dev. 2012;17:493–499. doi: 10.1021/op300062t. DOI
Stillhart C., Imanidis G., Kuentz M. Insights into drug precipitation kinetics during in vitro digestion of a lipid-based drug delivery system using in-line raman spectroscopy and mathematical modeling. Pharm. Res. 2013;30:3114–3130. doi: 10.1007/s11095-013-0999-2. PubMed DOI
Wolbert F., Nikoleit K., Steinbrink M., Luebbert C., Sadowski G. The shelf life of asds: 1. measuring the crystallization kinetics at humid conditions. Mol. Pharm. 2022;19:2483–2494. doi: 10.1021/acs.molpharmaceut.2c00188. PubMed DOI
Zhao Y., Yuan J., Ji Z., Wang J., Rohani S. Combined application of in situ fbrm, atr-ftir, and raman on polymorphism transformation monitoring during the cooling crystallization. Ind. Eng. Chem. Res. 2012;51:12530–12536. doi: 10.1021/ie301241h. DOI
Acevedo D., Yang X., Mohammad A., Pavurala N., Wu W., O’Connor T., Cruz C. Raman spectroscopy for monitoring the continuous crystallization of carbamazepine. Org. Process Res. Dev. 2018;22:156–165. doi: 10.1021/acs.oprd.7b00322. DOI
Svoboda R. Extended theoretical analysis of crystallisation kinetics being studied by in situ XRD. Phil. Mag. 2020;100:713–727. doi: 10.1080/14786435.2019.1704901. DOI
Sun Y., Zhu L., Kearns K.L., Ediger M.D., Yu L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA. 2011;108:5990–5995. doi: 10.1073/pnas.1017995108. PubMed DOI PMC
Wu T., Sun Y., Li N., de Villiers M.M., Yu L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI
Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI
Hasebe M., Musumeci D., Powell C.T., Cai T., Gunn E., Zhu L., Yu L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI
Newman A., Zografi G. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Mol. Pharm. 2020;17:1761–1777. doi: 10.1021/acs.molpharmaceut.0c00181. PubMed DOI
Rams-Baron M., Jachowicz R., Boldyreva E., Zhou D., Jamroz W., Paluch M. Amorphous Drugs—Benefits and Challenges. Springer; Berlin/Heidelberg, Germany: 2018.
Qin S., Ting C. Recent progress on crystallization of amorphous pharmaceutical solids. J. China Pharm. Univ. 2017;48:654–662.
Dobreva A., Stoyanov A., Tzuparska S., Gutzow I. Non-steady-state effects in the kinetics of crystallization of organic polymer glass-forming melts. Thermochim. Acta. 1996;280–281:127–151. doi: 10.1016/0040-6031(95)02639-8. DOI
Smith G.P.S., Huff G.S., Gordon K.C. Investigating Crystallinity Using Low Frequency Raman Spectroscopy: Applications in Pharmaceutical Analysis. Spectroscopy. 2016;31:42–50.
Svoboda R. Johnson-Mehl-Avrami kinetics as a universal description of crystallization in glasses? J. Eur. Ceram. Soc. 2024;44:4064–4082. doi: 10.1016/j.jeurceramsoc.2023.12.096. DOI
Johnson W.A., Mehl K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. (Metall) Eng. 1939;135:416–442.
Avrami M. Kinetics of phase change I—General theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI
Avrami M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940;7:212–224. doi: 10.1063/1.1750631. DOI
Avrami M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941;7:177–184. doi: 10.1063/1.1750872. DOI
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.
Svoboda R., Kozlová K. Thermo-structural characterization of phase transitions in amorphous griseofulvin: From sub-Tg relaxation and crystal growth to high-temperature decomposition. Molecules. 2024;29:1516. doi: 10.3390/molecules29071516. PubMed DOI PMC
Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI
Naraynaswamy O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI
Moynihan C.T., Easteal A.J., DeBolt M.A., Tucker J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI
Van Duong T., Lüdeker D., Van Bockstal P.-J., De Beer T., Van Humbeeck J., Van den Mooter G. Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Mol. Pharm. 2018;15:1037–1051. doi: 10.1021/acs.molpharmaceut.7b00930. PubMed DOI
Lee A.Y., Erdemir D., Myerson A.S. Crystal Polymorphism in Chemical Process Development. Annu. Rev. Chem. Biomol. Eng. 2011;2:259–280. doi: 10.1146/annurev-chembioeng-061010-114224. PubMed DOI
Surwase S.A., Boetker J., Saville D., Boyd B., Gordon K., Peltonen L., Strachan C.J. Indomethacin: New Polymorphs of an Old Drug. Mol. Pharm. 2013;10:4472–4480. doi: 10.1021/mp400299a. PubMed DOI
Ueda H., Ida Y., Kadota K., Tozuka Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm. 2014;462:115–122. doi: 10.1016/j.ijpharm.2013.12.025. PubMed DOI
Huang C., Ruan S., Cai T., Yu L. Fast surface diffusion and crystallization of amorphous griseofulvin. Phys. Chem. B. 2017;121:9463–9468. doi: 10.1021/acs.jpcb.7b07319. PubMed DOI
Shi Q., Cai T. Fast crystal growth of amorphous griseofulvin: Relations between bulk and surface growth modes. Cryst. Growth Des. 2016;16:3279–3286. doi: 10.1021/acs.cgd.6b00252. DOI
Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2022;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI
Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.
Pang Y., Sun D., Gu Q., Chou K.-C., Wang X., Li Q. Comprehensive Determination of Kinetic Parameters in Solid-State Phase Transitions: An Extended Jonhson-Mehl-Avrami-Kolomogorov Model with Analytical Solutions. Cryst. Growth Des. 2016;16:2404–2415. doi: 10.1021/acs.cgd.6b00187. DOI
Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC