Diverse prehistoric cattle husbandry strategies in the forests of Central Europe
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, historické články
Grantová podpora
FP7-IDEAS-ERC/324202
EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
DHF/R1/180064
Royal Society
RGF/ED/181067
Royal Society
PubMed
39472666
PubMed Central
PMC11726460
DOI
10.1038/s41559-024-02553-y
PII: 10.1038/s41559-024-02553-y
Knihovny.cz E-zdroje
- MeSH
- archeologie MeSH
- chov zvířat * metody dějiny MeSH
- dějiny starověku MeSH
- lesy * MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Evropa MeSH
During the sixth millennium BCE, the first farmers of Central Europe rapidly expanded across a varied mosaic of forested environments. Such environments would have offered important sources of mineral-rich animal feed and shelter, prompting the question: to what extent did early farmers exploit forests to raise their herds? Here, to resolve this, we have assembled multi-regional datasets, comprising bulk and compound-specific stable isotope values from zooarchaeological remains and pottery, and conducted cross-correlation analyses within a palaeo-environmental framework. Our findings reveal a diversity of pasturing strategies for cattle employed by early farmers, with a notable emphasis on intensive utilization of forests for grazing and seasonal foddering in some regions. This experimentation with forest-based animal feeds by early farmers would have enhanced animal fertility and milk yields for human consumption, concurrently contributing to the expansion of prehistoric farming settlements and the transformation of forest ecosystems. Our study emphasizes the intricate relationship that existed between early farmers and forested landscapes, shedding light on the adaptive dynamics that shaped humans, animals and environments in the past.
Archaeological Heritage Office Saxony Dresden Germany
CNRS ARCHIMEDE University of Strasbourg Strasbourg France
Comenius University Archaeological Institute Slovak Academy of Sciences Nitra Slovakia
Department of Archaeology University of Innsbruck Innsbruck Austria
Department of History Palacký University Olomouc Czech Republic
Department of Prehistoric and Historical Archaeology University of Vienna Vienna Austria
Faculty of Archaeology Adam Mickiewicz University Poznań Poland
Faculty of Archaeology Leiden University Leiden The Netherlands
Herman Ottó Museum Miskolc Hungary
Hungarian National Museum National Institute of Archaeology Budapest Hungary
ICArEHB Faculdade de Ciências Humanas e Sociais Universidade do Algarve Faro Portugal
Independent researcher Milan Italy
Independent researcher Vienna Austria
Institute for Prehistoric and Protohistoric Archaeology Kiel University Kiel Germany
Institute of Archaeological Sciences Eötvös Loránd University Budapest Hungary
Institute of Archaeology and Museology Masaryk University Brno Czech Republic
Institute of Archaeology Maria Curie Skłodowska University Lublin Poland
Institute of Archeology University of Gdańsk Gdańsk Poland
István Dobó Castle Museum Eger Hungary
Leibniz Zentrum für Archäologie Johannes Gutenberg University Mainz Germany
LVR State Service for Archaeological Heritage Bonn Germany
Organic Geochemistry Unit School of Chemistry University of Bristol Bristol UK
School of Engineering and Applied Science Princeton University Princeton USA
Trajectoires Université Paris 1 Panthéon Sorbonne Paris France
Zobrazit více v PubMed
Bogucki, P. Animal traction and household economies in Neolithic Europe. Antiquity67, 492–503 (1993).
Marciniak, A. Placing Animals in the Neolithic: Social Zooarchaeology of Prehistoric Farming Communities (Univ. College London, 2005).
Bogucki, P. Forest Farmers and Stockherders. Early Agriculture and Its Consequences in North–Central Europe (Cambridge Univ. Press, 1988).
Rowley-Conwy, P. & Layton, R. Foraging and farming as niche construction: stable and unstable adaptations. Philos. Trans. R. Soc. Lond. B366, 849–862 (2011). PubMed PMC
Gillis, R. E. et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. Lond. B10.1098/rspb.2017.0905 (2017). PubMed PMC
Gardner, A. The ecology of Neolithic environmental impacts—re-evaluation of existing theory using case studies from Hungary and Slovenia. Doc. Praehist.XXVI, 163–184 (1999).
Pokorný, P. et al. Mid-Holocene bottleneck for Central European dry grasslands: did steppe survive the forest optimum in Northern Bohemia, Czech Republic? Holocene25, 716–726 (2015).
Sudhaus, D. & Friedmann, A. Holocene vegetation and land use history in the Northern Vosges (France). Q. Sci. J.64, 55–66 (2015).
Vostrovská, I., Bíšková, J., Lukšíková, H., Kočár, P. & Kočárová, R. The environment and subsistence of the early Neolithic settlement area at Těšetice-Kyjovice, Czech Republic. Environ. Archaeol.24, 248–262 (2019).
Kreuz, A. Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements? Veg. Hist. Archaeobot.17, 51–64 (2007).
Saqalli, M. et al. Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 B.C. Veg. Hist. Archaeobot.23, 37–50 (2014).
Iversen, J. in The Neolithisation of Denmark: 150 Years of Debate Vol. 12 (eds Fischer, A. & Kristiansen, K.) 105–116 (Sheffield Archaeological Monographs, 1969).
Bogaard, A. Neolithic Farming in Central Europe. An Archaeobotanical Study of Crop Husbandry Practices (Routledge, 2004).
Austad, I. in The Cultural Landscape—Past, Present and Future (eds Birks, H. H., et al.) 11–30 (Cambridge Univ. Press, 1988).
Halstead, P., Tierney, J., Butler, S. & Mulder, Y. Leafy hay: an ethnoarchaeological study in NW Greece. Environ. Archaeol.1, 71–80 (1996).
Hejcmanová, P., Stejskalová, M. & Hejcman, M. Forage quality of leaf fodder from the main broad-leaved woody species and its possible consequences for the Holocene development of forest vegetation in Central Europe. Veg. Hist. Archaeobot.23, 607–613 (2013).
Oross, K. & Bánffy, E. Three successive waves of Neolithisation: LBK development in Transdanubia. Doc. Praehist.36, 175–189 (2009).
Pavlů, I. The Neolithisation of Central Europe. Archeol. Rozhl.LVII, 293–302 (2005).
Casanova, E. et al. Spatial and temporal disparities in human subsistence in the Neolithic Rhineland gateway. J. Archaeol. Sci.10.1016/j.jas.2020.105215 (2020).
Gronenborn, D. et al. Expansion of farming in western Eurasia, 9600 - 4000 cal BC. Zenodo10.5281/zenodo.5903164 (2023).
Whittle, A. W. R. & Bickle, P. The First Farmers of Central Europe: Diversity in LBK Lifeways (Oxbow Books, 2013).
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature551, 368–372 (2017). PubMed PMC
Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol.8, e1000536 (2010). PubMed PMC
Döhle, J. Haustierhaltung und Jagd in der Linienbandkeramik-ein Überblick. Z. Archäol.27, 105–124 (1993).
Tresset, A. & Vigne, J. D. in Rôle et statut de la chasse dans le Néolithique ancien danubien (5500–4900 av. J.-C.). Actes Premières rencontres danubiennes (eds Arbogast, R. M., Jeunesse, C. & Schibler, J.) 129–151 (Marie Leidorf, 2001).
Roffet-Salque, M. et al. in Ludwinowo 7—Neolithic Settlement in Kuyavia (ed. Pyzel, J.) 301–316 (Profil-Archeo, 2019).
Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in Northern Europe. Nature493, 522–525 (2013). PubMed
Halstead, P. & O’Shea, J. in Bad Year Economics. Cultural Responses to Risk and Uncertainty (eds Halstead, P. & O.’Shea, J.) 1–7 (Cambridge Univ. Press, 1989). PubMed
Evershed, R. P. et al. Dairying, diseases and the evolution of lactase persistence in Europe. Nature608, 336–345 (2022). PubMed PMC
Meadow, R. H. in The Walking Larder: Patters of Domestication, Patoralism and Predation One World Archaeology (ed. Clutton-Brock, J.) 8, 80–90 (Unwin Hyman, 1989).
Rasmussen, P. Analysis of goat/sheep faeces from Egolzwil 3, Switzerland: evidence for branch and twig foddering of livestock in the Neolithic. J. Archaeol. Sci.10.1006/jasc.1993.1030 (1993).
Balasse, M., Boury, L., Ughetto-Monfrin, J. & Tresset, A. Stable isotope insights (δ18O,δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ. Archaeol.17, 29–44 (2013).
Fraser, R. A., Bogaard, A., Schäfer, M., Arbogast, R. & Heaton, T. H. E. Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeol.45, 492–517 (2013).
Berthon, R., Kovačiková, L., Tresset, A. & Balasse, M. Integration of Linearbandkeramik cattle husbandry in the forested landscape of the mid-Holocene climate optimum: seasonal-scale investigations in Bohemia. J. Anthropol. Archaeol.51, 16–27 (2018).
Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol.266, 69–82 (2008).
Gillis, R. E. & Zanon, M. Biodiversités, environnements et sociétés depuis la préhistoire: nouveaux marqueurs et approches intégrées (biodiversities, environments and societies since Prehistory: new markers and integrated approaches). In Proc. 41th Rencontres internationales d’archéologie et d’histoire (eds Nicoud, E. et al.) 113–122 (APDCA–CEPAM, 2021).
Hedges, R. et al. in The First Farmers of Central Europe: Diversity in LBK Lifeways (eds Whittle, A. W. R. & Bickle, P.) 9, 343–384 (Oxbow, 2013).
Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci.18, 227–248 (1991).
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol.40, 503–537 (1989).
Vogel, J. C. Recycling of carbon in a forest environment. Oceologia Plant.13, 89–94 (1978).
Van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci.18, 249–259 (1991).
Tieszen, L. L. & Fagre, T. in Prehistoric Human Bone: Archaeology at the Molecular Level (eds Lambert, J. B. & Grupe, G.) 121–155 (Springer, 1993).
Balasse, M. Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. Int. J. Osteoarchaeol.12, 155–165 (2002).
Balasse, M. Potential biases in sampling design and interpretation of intra-tooth isotope analysis. Int. J. Osteoarchaeol.13, 3–10 (2003).
Kendall, I. P. et al. Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry161, 130–138 (2019). PubMed
Kendall, I. P., Gillis, R. E., Balasse, M. & Evershed, R. P. in Ludwinowo, Stanowisko 7. Osada Neolityczna na Kujawach (Ludwinowo, Site 7. Neolithic settlement in Kuyavia Ocalone Dziedzictwo Archeologiczne) (ed. Pyzel, J.) 277–288 (Wydawnictwo Profil-Archeo, 2019).
Roffet-Salque, M. & Evershed, R. P. in Kopydłowo, Stanowisko 6. Osady Neolityczne z Pogranicza Kujaw i Wielkopolski. (eds Marciniak, A., Sobkowiak-Tabaka, I., Bartkowiak, M. & Lisowski, M.) 133–142 (Wydawnictwo Profil-Archeo, 2016).
Salque, M. et al. New insights into the early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels. Anthropozoologica47, 45–61 (2012).
Palmquist, D. L. & Mattos, W. Turnover of lipoproteins and transfer to milk fat of dietary (1-carbon-14) linoleic acid in lactating cows. J. Dairy Sci.61, 561–565 (1978).
Brychova, V. et al. Animal exploitation and pottery use during the early LBK phases of the Neolithic site of Bylany (Czech Republic) tracked through lipid residue analysis. Quat. Int.574, 91–101 (2021).
Matlova, V. et al. Defining pottery use and animal management at the Neolithic site of Bylany (Czech Republic). J. Archaeol. Sci. Rep.14, 262–274 (2017).
Gillis, R. E. et al. Stable isotopic insights into crop cultivation, animal husbandry, and land use at the Linearbandkeramik site of Vráble-Veľké Lehemby (Slovakia). Archaeol. Anthropol. Sci.10.1007/s12520-020-01210-2 (2020).
Oelze, V. M. et al. Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J. Archaeol. Sci.38, 270–279 (2011).
Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J. & Alt, K. W. Beyond the grave: variability in Neolithic diets in Southern Germany? J. Archaeol. Sci.33, 39–48 (2006).
Kovačiková, L., Bréhard, S., Šumberová, R., Balasse, M. & Tresset, A. The new insights into the subsistence and early farming from Neolithic settlements in Central Europe: the archaeozoological evidence from the Czech Republic. Archaeofauna21, 71–79 (2012).
Marciniak, A. et al. Animal husbandry in the early and middle Neolithic settlement at Kopydłowo in the Polish lowlands. A multi-isotope perspective. Archaeol. Anthropol. Sci.9, 1461–1479 (2017).
Zanon, M., Davis, B. A. S., Marquer, L., Brewer, S. & Kaplan, J. O. European forest cover during the past 12,000 years: a palynological reconstruction based on modern analogs and remote sensing. Front. Plant Sci.9, 253 (2018). PubMed PMC
Sánchez Goñi, M. F. et al. The expansion of Central and Northern European Neolithic populations was associated with a multi-century warm winter and wetter climate. Holocene26, 1188–1199 (2016).
Cerling, T. E. et al. CH4/CO2 ratios and carbon isotope enrichment between diet and breath in herbivorous mammals. Front. Ecol. Evol.10.3389/fevo.2021.638568 (2021).
Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta48, 625–639 (1984).
Gillis, R. E., Gaastra, J. S., Vander Linden, M. & Vigne, J. D. A species-specific investigation into sheep and goat husbandry during the early European Neolithic. Environ. Archaeol.10.1080/14614103.2019.1615214 (2019).
Leuschner, C. & Meier, I. C. The ecology of Central European tree species: trait spectra, functional trade-offs, and ecological classification of adult trees. Perspect. Plant Ecol. Evol. Syst.33, 89–103 (2018).
Lynch, A. H., Hamiltion, J. & Hedges, R. E. M. Where the wild things are: aurochs and cattle in England. Antiquity82, 1025–1039 (2008).
Balasse, M., Tresset, A. & Ambrose, S. H. Stable isotope evidence (δ18O,δ13C) for winter feeding on seaweed by Neolithic sheep of Scotland. J. Zool.270, 170–176 (2006).
Hall, S. J. & Hall, J. G. Inbreeding and population dynamics of the Chillingham cattle (Bos taurus). J. Zool.216, 479–493 (1988).
Balasse, M. et al. Seasonal calving in European Prehistoric cattle and its impacts on milk availability and cheese-making. Sci. Rep.11, 8185 (2021). PubMed PMC
Labussière, J. in Biology of Lactation (eds Martinet, J., Houdebine, L.-M. & Head, H. H.) 307–343 (INRA, 1999).
Pechtl, J. & Land, A. Tree rings as a proxy for seasonal precipitation variability and early Neolithic settlement dynamics in Bavaria, Germany. PLoS ONE14, e0210438 (2019). PubMed PMC
Correa-Ascencio, M. & Evershed, R. P. High-throughput screening of organic residues in archaeological potsherds using direct methanolic acid extraction. Anal. Methods6, 1330–1340 (2014).
Dunne, J. et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature486, 390–394 (2012). PubMed
Copley, M. S. et al. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl Acad. Sci. USA100, 1524–1529 (2003). PubMed PMC
Corr, L. T., Berstan, R. & Evershed, R. P. Optimisation of derivatisation procedures for the determination of δ13C values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom.21, 3759–3771 (2007). PubMed
Styring, A. K. et al. Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion–isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl esters. Rapid Commun. Mass Spectrom.26, 2328–2334 (2012). PubMed
Kendall, I. P., Lee, M. R. F. & Evershed, R. P. The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web. Sci. Technol. Archaeol. Res.3, 135–145 (2018).
Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. R J.8, 204–218 (2016).
Model Selection via Cross-Validation for IDW. Statistics and geodata analysis using R (SOGA-R). Freie Universität, Berlinhttps://www.geo.fu-berlin.de/en/v/soga-r/Advances-statistics/Geostatistics/Inverse-Distance-Weighting-IDW/Model-Selection-via-Cross-Validation-for-IDW/index.html (2023).
R: a language and environment for statistical computing. R Foundation for Statistical Computinghttps://www.R-project.org/ (2017).
corrplot: visualization of a correlation matrix. R package version 0.92 https://github.com/taiyun/corrplot (2021).
Brown, W. A. B., Christofferson, P. V., Massler, M. & Weiss, M. B. Postnatal tooth development in cattle. Am. J. Vet. Res.21, 7–34 (1960). PubMed
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Free vector and raster map data. Natural Earth Data version 3.0.0 https://www.naturalearthdata.com/downloads/50m-physical-vectors/50m-rivers-lake-centerlines/ (2013).