Seasonal calving in European Prehistoric cattle and its impacts on milk availability and cheese-making

. 2021 Apr 14 ; 11 (1) : 8185. [epub] 20210414

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33854159

Grantová podpora
324202 European Research Council - International

Odkazy

PubMed 33854159
PubMed Central PMC8046818
DOI 10.1038/s41598-021-87674-1
PII: 10.1038/s41598-021-87674-1
Knihovny.cz E-zdroje

Present-day domestic cattle are reproductively active throughout the year, which is a major asset for dairy production. Large wild ungulates, in contrast, are seasonal breeders, as were the last historic representatives of the aurochs, the wild ancestors of cattle. Aseasonal reproduction in cattle is a consequence of domestication and herding, but exactly when this capacity developed in domestic cattle is still unknown and the extent to which early farming communities controlled the seasonality of reproduction is debated. Seasonal or aseasonal calving would have shaped the socio-economic practices of ancient farming societies differently, structuring the agropastoral calendar and determining milk availability where dairying is attested. In this study, we reconstruct the calving pattern through the analysis of stable oxygen isotope ratios of cattle tooth enamel from 18 sites across Europe, dating from the 6th mill. cal BC (Early Neolithic) in the Balkans to the 4th mill. cal BC (Middle Neolithic) in Western Europe. Seasonal calving prevailed in Europe between the 6th and 4th millennia cal BC. These results suggest that cattle agropastoral systems in Neolithic Europe were strongly constrained by environmental factors, in particular forage resources. The ensuing fluctuations in milk availability would account for cheese-making, transforming a seasonal milk supply into a storable product.

BioSense Institute University of Novi Sad 21000 Novi Sad Serbia

Department of Archaeology Savaria Museum Szombathely 9700 Hungary

Department of Bioarchaeology Vasile Pârvan Institute of Archaeology Romanian Academy 010667 Bucharest Romania

Department of History Palacký University 77900 Olomouc Czech Republic

Dobó István Castle Museum Vár út 1 3300 Eger Hungary

Faculty of Archaeology Adam Mickiewicz University 61 614 Poznań Poland

Institut Für Ur und Frühgeschichte und Vorderasiatische Archäologie Universität Heidelberg 69117 Heidelberg Germany

Institute of Archaeology and Museology Masaryk University 60200 Brno Czech Republic

Institute of Archaeology Research Centre for the Humanities Eötvös Loránd Research Network Centre of Excellence of the Hungarian Academy of Sciences 1097 Budapest Hungary

Interdisciplinary Center for Archaeology and Evolution of Human Behaviour Faculdade de Ciências Humanas e Sociais Universidade do Algarve 8005 139 Faro Portugal

Laboratory for Bioarchaeology Department of Archaeology Faculty of Philosophy University of Belgrade 11000 Belgrade Serbia

Laboratory of Archaeobotany and Palaeoecology Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic

Organic Geochemistry Unit School of Chemistry University of Bristol Bristol BS8 1TS UK

Römisch Germanische Kommission des Deutschen Archäologischen Instituts 60325 Frankfurt Main Germany

UMR 7044 Archimède MISHA CNRS University of Strasbourg 67000 Strasbourg France

UMR 7209 AASPE « Archéozoologie archéobotanique sociétés pratiques environnements » CNRS MNHN 75005 Paris France

Vienna Institute for Archaeological Science University of Vienna 1190 Vienna Austria

Zobrazit více v PubMed

Franz LAF, Bradley DG, Larson G, Orlando L. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 2020;21:449–460. doi: 10.1038/s41576-020-0225-0. PubMed DOI

Balasse M, Tresset A. Environmental constraints on the reproductive activity of domestic sheep and cattle: What latitude for the herder? Anthropozoologica. 2007;42(2):71–88.

Towers J, Jay M, Mainland I, Nehlich O, Montgomery J. A calf for all seasons? The potential of stable isotope analysis to investigate prehistoric husbandry practices. J. Archaeol. Sci. 2011;38:1858–1868. doi: 10.1016/j.jas.2011.03.030. DOI

Towers J, Mainland I, Montgomery J, Bond J. Calving seasonality at Pool, Orkney during the first millennium AD: An investigation using intra-tooth isotope ratio analysis of cattle molar enamel. Environ. Archaeol. 2017;22:40–55. doi: 10.1080/14614103.2015.1116214. DOI

Gron KJ, Montgomery J, Rowley-Conwy P. Cattle management for dairying in Scandinavia’s earliest Neolithic. PLoS ONE. 2015;10(7):e0131267. doi: 10.1371/journal.pone.0131267. PubMed DOI PMC

Tornero C, et al. Early evidence of sheep lambing de-seasoning in the Western Mediterranean in the sixth millennium BCE. Sci. Rep. 2020;10:12798. doi: 10.1038/s41598-020-69576-w. PubMed DOI PMC

Ortavant R, Pelletier J, Ravault JP, Thimonier J, Volland P. Photoperiod: Main proximal and distal factor of the circannual cycle of reproduction in farm mammals. Oxf. Rev. Reprod. Biol. 1985;7:305–345. PubMed

Bertoldo MJ, Holyoake PK, Evans G, Grupen CG. Seasonal variation in the ovarian function of sows. Reprod. Fertil. Dev. 2012;24:822–834. doi: 10.1071/RD11249. PubMed DOI

Chemineau P, et al. Seasonality of reproduction in mammals: Intimate regulatory mechanisms and practical implications. Reprod. Domest. Anim. 2008;Suppl 2:40–47. doi: 10.1111/j.1439-0531.2008.01141.x. PubMed DOI

Helmer D, Gourichon L, Monchot H, Peters J, Saña Segui M. Identifing early domestic cattle from Pre-pottery Neolithic sites on the Middle Euphrates using sexual dimorphism. In: Vigne J-D, Peters J, Helmer D, editors. The first steps of animal domestication. New archaeological approaches. Oxbow; 2005. pp. 86–95.

Rokosz M. History of the aurochs (Bos taurus primigenius) in Poland. Anim. Genet. Resour. Inf. 1995;16:5–12. doi: 10.1017/S1014233900004582. DOI

van Vuure C. Retracing the aurochs. History, morphology and ecology of an extinct wild ox. Pensoft Publishers; 2005.

Gidney, L. J. Offspring of the aurochs: A comparison of a reference collection of Dexter cattle skeletons with archaeological and historical data, Durham theses, Durham University. Durham E-Theses Online: http://etheses.dur.ac.uk/10561/ (2013)

Hall SJG, Hall JG. Inbreeding and population dynamics of the Chillingham wild cattle (Bos taurus) J. Zool. 1988;216:479–493. doi: 10.1111/j.1469-7998.1988.tb02444.x. DOI

Balasse M, Boury L, Ughetto-Monfrin J, Tresset A. Stable isotope insights (δ18O, δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ. Archaeol. 2012;17(1):29–44. doi: 10.1179/1461410312Z.0000000003. DOI

Balasse M, et al. Early herding at Măgura-Boldul lui Moş Ivănuş (early sixth millennium BC, Romania): Environments and seasonality from stable isotope analysis. Eur. J. Archaeol. 2013;16(2):221–246. doi: 10.1179/1461957112Y.0000000028. DOI

Balasse M, et al. Cattle and sheep herding at Cheia, Romania, at the turn of the fifth millennium cal BC: A view from stable isotope analysis. In: Whittle A, Bickle P, et al., editors. Early Farmers: The View from Archaeology and Science. Oxford University Press; 2014. pp. 115–142.

Berthon R, Kovačiková L, Tresset A, Balasse M. Integration of Linearbandkeramik cattle husbandry in the forested landscape of the mid-Holocene climate optimum: Seasonal-scale investigations in Bohemia. J. Anthropol. Archaeol. 2018;51:16–27. doi: 10.1016/j.jaa.2018.05.002. DOI

Kendall I, Gillis R, Balasse M, Evershed RP. Stable isotope perspectives of cattle husbandry practices. In: Pyzel J, editor. Ludwinowo, site 7 Neolithic settlement in Kuyavia. University of Gdansk Publishing House; 2019. pp. 277–288.

Kamjan S, Gillis RE, Çakırlar C, Raemaekers DCM. Specialized cattle farming in the Neolithic Rhine-Meuse Delta: Results from zooarchaeological and stable isotope (δ18O, δ13C, δ15N) analyses. PLoS ONE. 2020;15(10):e0240464. doi: 10.1371/journal.pone.0240464. PubMed DOI PMC

Gillis, R. E., Kendall, I., Evershed, R. P. & Balasse, M. Conduite de l’élevage dans un environnement forestier à Bischoffsheim : une approche biogéochimique. In Bischoffsheim : un village du Néolithique ancien en basse Alsace (France) (eds. Lefranc, P., Arbogast, R. -M.) (Musée national d'Histoire et d'Art du Grand Duché du Luxembourg, in press)

Hafner A, Schwörer C. Vertical mobility around the high-alpine Schnidejoch Pass. Indications of Neolithic and Bronze Age pastoralism in the Swiss Alps from paleoecological and archaeological sources. Quat. Int. 2018;484:3–18. doi: 10.1016/j.quaint.2016.12.049. DOI

Carrer F. Secondary products exploitation: Preliminary ethnoarchaeological insights from alpine cases study. In: Biagetti S, Lugli F, editors. The Intangible Elements of Culture in Ethnoarchaeological Research. Springer; 2016. pp. 115–124.

Craig O, et al. Did the first farmers of central and eastern Europe produce dairy foods? Antiquity. 2005;79(306):882–894. doi: 10.1017/S0003598X00115017. DOI

Vigne J-D, Helmer D. Was milk a “secondary product” in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goats. Anthropozoologica. 2007;42(2):9–40.

Evershed RP, et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature. 2008;455:528–531. doi: 10.1038/nature07180. PubMed DOI

Salque M, et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature. 2013;493:522–525. doi: 10.1038/nature11698. PubMed DOI

Debono Spiteri C, et al. Regional asynchronicity in dairy production and processing in early farming communities of the northern Mediterranean. PNAS. 2016;113(48):13594–13599. doi: 10.1073/pnas.1607810113. PubMed DOI PMC

Ethier J, et al. Earliest expansion of animal husbandry beyond the Mediterranean zone in the sixth millennium BC. Sci. Rep. 2017;7:7146. doi: 10.1038/s41598-017-07427-x. PubMed DOI PMC

Gillis R, et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. B. 2017;284:20170905. doi: 10.1098/rspb.2017.0905. PubMed DOI PMC

Stojanovski D, et al. Living off the land: Terrestrial-based diet and dairying in the farming communities of the Neolithic Balkans. PLoS ONE. 2020;15(8):e0237608. doi: 10.1371/journal.pone.0237608. PubMed DOI PMC

Carozza J-M, Micu C, Mihail F, Carozza L. Landscape change and archaeological settlements in the lower Danube valley and delta from early Neolithic to Chalcolithic time: A review. Quat. Int. 2012;261:21–31. doi: 10.1016/j.quaint.2010.07.017. DOI

Bréhard S, Bălăşescu A. What’s behind the tell phenomenon? An archaeozoological approach of Eneolithic sites in Romania. J. Archaeol. Sci. 2012;39:3167–3183. doi: 10.1016/j.jas.2012.04.054. DOI

Manning K, et al. Animal exploitation in the Early Neolithic of the Balkans and Central Europe. In: Colledge S, Conolly J, Dobney K, Manning K, Shennan S, et al., editors. The Origins and Spread of Domestic Animals in Southwest Asia and Europe. Left Coast Press; 2013. pp. 237–251.

Bánffy, E. First Farmers of the Carpathian Basin. Changing patterns in subsistence, ritual and monumental figurines. Prehistoric Society Research Paper No. 8. 2019 (Oxbow, 2019)

Bălăşescu A. Consideraţii cu privire la exploatarea mamiferelor în aşezarea Hamangia III de la Cheia. Pontica. 2008;41:49–56.

Bréhard S. Le complexe chasséen vu par l’archéozoologie : révision de la dichotomie Nord-Sud et confirmation de la partition fonctionnelle au sein des sites méridionaux. Bull. Soc. préhist. fr. 2011;108(1):73–92. doi: 10.3406/bspf.2011.13994. DOI

Beck HE, Zimmermann NE, McVovar TR, Vergopolan N, Berg N, Wood EF. Present and future Köppen–Geiger climate classification mapsat 1-km resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC

Longinelli A. Oxygen isotopes in mammal bone phospate: A new tool for paleohydrological and paleoclimatological research? Geochem. Cosmochim. Acta. 1984;48:385–390. doi: 10.1016/0016-7037(84)90259-X. DOI

Chen G, Schnyder H, Auerswald K. Model explanation of the seasonal variation of δ18O in cow (Bos taurus) hair under temperate conditions. Sci. Rep. 2017;7:320. doi: 10.1038/s41598-017-00361-y. PubMed DOI PMC

Land LS, Lundelius EL, Valastro S. Isotopic ecology of deer bones. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1980;32:143–151. doi: 10.1016/0031-0182(80)90037-1. DOI

D’Angela D, Longinelli A. Oxygen isotopes in living mammal’s bone phosphate: Further results. Chem. Geol. Isotope Geosci. Sect. 1990;86:75–82. doi: 10.1016/0168-9622(90)90007-Y. DOI

Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotope Records (eds. Stwart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 1–36 (American Geophysical Union, 1993)

Bryant JD, Froelich PN, Showers WJ, Genna BJ. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996;126:75–90. doi: 10.1016/S0031-0182(96)00071-5. DOI

Fricke HC, O’Neil JR. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: Implications for palaeoclimatological and palaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996;126:91–99. doi: 10.1016/S0031-0182(96)00072-7. DOI

Balasse M, Smith AB, Ambrose SH, Leigh SR. Determining sheep birth seasonality by analysis of tooth enamel oxygen isotope ratios: The Late Stone Age site of Kasteelberg (South Africa) J. Archaeol. Sci. 2003;30:205–215. doi: 10.1006/jasc.2002.0833. DOI

Balasse M, Obein G, Ughetto-Monfrin J, Mainland I. Investigating seasonality and season of birth in past herds: A reference set of sheep enamel stable oxygen isotope ratios. Archaeometry. 2012;54:349–368. doi: 10.1111/j.1475-4754.2011.00624.x. DOI

Brown WAB, Christofferson PV, Massler M, Weiss MMB. Postnatal development in cattle. Am. J. Vet. Res. 1960;21(80):7–34. PubMed

Balasse M. Reconstructing dietary and environmental history from enamel isotopic analysis: Time resolution of intra-tooth sequential sampling. Int. J. Osteoarchaeol. 2002;12:155–165. doi: 10.1002/oa.601. DOI

Balasse M, et al. Neolithic sheep birth distribution: Results from Nova Nadezhda (sixth millennium BC, Bulgaria) and a reassessment of European data with a new modern reference set including upper and lower molars. J. Archaeol. Sci. 2020;118:105–139. doi: 10.1016/j.jas.2020.105139. DOI

Lecomte, T. & Le Neveu, C. Le Marais Vernier. Contribution à l'étude et à la gestion d'une zone humide. (Université de Rouen Haute-Normandie, 1986)

Kühn M, et al. Methods for the examination of cattle, sheep and goat dung in prehistoric wetland settlements with examples of the sites Alleshausen-Täschenwiesen and Alleshausen-Grundwiesen (around cal 2900 BC) at lake Federsee, south-west Germany. J. Environ. Archaeol. 2013;18:43–57. doi: 10.1179/1461410313Z.00000000017. DOI

Bickle, P. et al. Alsace. In The first farmers of central Europe. Diversity in LBK lifeways (eds. Bickle, P. & Whittle, A.), 291–342 (Oxbow, 2013)

Mauri A, Davis BAS, Collins PM, Kaplan JO. The climate of Europe during the Holocene: A gridded pollen-based reconstruction and its multi-proxy evaluation. Quat. Sci. Rev. 2015;112:109–127. doi: 10.1016/j.quascirev.2015.01.013. DOI

Samartin S, et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 2017;10:207–212. doi: 10.1038/ngeo2891. DOI

Sanchez-Goni MF, et al. The expansion of Central and Northern European Neolithic populations was associated with a multi-century warm winter and wetter climate. Holocene. 2016;26(8):1188–1199. doi: 10.1177/0959683616638435. DOI

Alley RB, et al. Holocene climate instability: A prominent, widespread event 8200 yr ago. Geology. 1997;25(6):483–486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2. DOI

Pross J, et al. Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology. 2009;37(10):887–890. doi: 10.1130/G25739A.1. DOI

Saqalli M, et al. Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 BC. Veg Hist Archaeobot. 2014;23(Supplement 1):37–50. doi: 10.1007/s00334-014-0436-4. DOI

Casanova E, et al. Spatial and temporal disparities in human subsistence in the Neolithic Rhineland gateway. J. Archaeol. Sci. 2020;122:105215. doi: 10.1016/j.jas.2020.105215. DOI

Roffet-Salque, M. & Evershed, R. P. Shifting pottery use and animal management at Kopydłowo (Poland) traced through lipid residue analyses of pottery vessels. In Kopydłowo, stanowisko 6. Osady neolityczne z pogranicza Kujaw i Wielkopolski (eds. Marciniak, A., Sobkowiak-Tabaka, I., Bartkowiak, M. & Lisowski, M.) 133–142 (Wydawnictwo Profil-Archeo, 2016)

Roffet-Salque, M. et al. Chronological and spatial trends in pottery use revealed through lipid residue analyses of LBK pottery vessels. In Ludwinowo, site 7 Neolithic settlement in Kuyavia (ed. Pyzel J.) 301–316 (University of Gdansk Publishing House, 2019)

Peške L. Contribution to the beginning of milking in Prehistory. Archeologické rozhledy. 1994;46(1):97–104.

Bignal, E., Maccracken, D. & Mackay, A. The economics and ecology of extensively reared Highland Cattle in the Scottish LFA: An example of a selfsustaining livestock system. EFNCP Occasional Publication Number 19 (1999)

Gillis, R. E. A calf's eye view of milk production: Tony Legge’s contribution to dairy husbandry studies. In Economic Zooarchaeology: Studies in Hunting, Herding and Early Agriculture (eds. Rowley-Conwy, P., Serjeantson, D. & Halstead, P.) 135–142 (Oxbow, 2017)

Reinhardt C, Reinhardt A, Reinhardt V. Social behaviour and reproduction performance in semi-wild Scottish Highland cattle. Appl. Anim. Behav. Sci. 1986;15:125–136. doi: 10.1016/0168-1591(86)90058-4. DOI

Gómez M, Plazaola JM, Seiliez JP. The Betizu Cattle of the Basque country. Anim. Genet. Resour. Inf. 1997;22:1–5. doi: 10.1017/S101423390000095X. DOI

Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. PNAS. 2007;104(10):3736–3741. doi: 10.1073/pnas.0607187104. PubMed DOI PMC

Burger J, et al. Low prevalence of lactase persistence in Bronze Age Europe indicates ongoing strong selection over the last 3,000 years. Current Biol. 2020;30(21):4307–4315. doi: 10.1016/j.cub.2020.08.033. PubMed DOI

Evans-Pritchard, E. E. Les Nuer (Gallimard, 1937)

Dahl, G.& Hjort, A. Having herds. Pastoral herd growth and household economy. Stockholm Studies in Social Anthropology 2 (Stockholm University, 1976)

Digard JP. Techniques des nomades baxtyâri d’Iran. Editions de la Maison des Sciences de l’Homme; 1981.

Ponomarenko, E. & Dyck, I. Ancient nomads of the Eurasian and North American grassland. (Canadian Museum of Civilization, 2007)

Ertuğ-Yaraş, F. An Ethnoarchaeological Study of Subsistence and Plant Gathering in Central Anatolia (Ph. D. dissertation, Washington University, St. Louis, 1997)

Poplin F. L'origine de la production laitière. Initiation à l'archéologie et à la Préhistoire. 1980;17:13–17.

Bogucki P. Ceramic sieves of the Linear Pottery culture and their economic implications. Oxf. J. Archaeol. 1984;3(1):15–30. doi: 10.1111/j.1468-0092.1984.tb00113.x. DOI

Halstead P. Ask the fellows who lop the hay: Leaf-fodder in the mountains of northwest Greece. Rural. Hist. 1998;9(2):211–234. doi: 10.1017/S0956793300001588. DOI

Andrews, A. H. The use of dentition to age young cattle. In Ageing and Sexing Animal Bones from Archaeological Sites (eds. Wilson, R., Grigson, C. & Payne, S.) 141–53 (British Archaeological Reports, British Series 109. Archaeopress, 1982)

Jones GG, Sadler P. A review of published sources for age at death in cattle. Environ. Archaeol. 2012;17(1):1–10. doi: 10.1179/1461410312Z.0000000001. DOI

Demoule, J. -P. La révolution néolithique en France (La Découverte, 2007)

Astaloş, C., Sommer, U. & Virag, C. Excavations of an Early Neolithic Site at Tăşnad, Romania. Archaeol. Int.16, 47–53 (2012–2013)

Szécsényi-Nagy A, et al. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization. Proc. R. Soc. B. 2015;282:20150339. doi: 10.1098/rspb.2015.0339. PubMed DOI PMC

Gillis R, et al. Sophisticated cattle dairy husbandry at Borduşani-Popină (Romania, fifth millennium BC: The evidence from complementary analysis of mortality profiles and stable isotopes. World Archaeol. 2013;45:447–472. doi: 10.1080/00438243.2013.820652. DOI

Balasse M, et al. Sheep birth distribution in past herds: a review for prehistoric Europe (6th to 3rd millennia BC) Animal. 2017;436B:29–40. PubMed

Tornero C, Bălăşescu A, Ughetto-Monfrin J, Voinea V, Balasse M. Seasonality and season of birth in early Eneolithic sheep from Cheia (Romania): Methodological advances and implications for animal economy. J. Archaeol. Sci. 2013;40:4039–4055. doi: 10.1016/j.jas.2013.05.013. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diverse prehistoric cattle husbandry strategies in the forests of Central Europe

. 2025 Jan ; 9 (1) : 87-98. [epub] 20241029

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...