A protocol for in vivo RNA labeling and visualization in tobacco pollen tubes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39549237
PubMed Central
PMC11609635
DOI
10.1016/j.xpro.2024.103433
PII: S2666-1667(24)00598-7
Knihovny.cz E-zdroje
- Klíčová slova
- cell biology, developmental biology, microscopy, plant sciences,
- MeSH
- barvení a značení metody MeSH
- Pseudomonas aeruginosa genetika metabolismus MeSH
- pylová láčka * metabolismus genetika MeSH
- ribonukleoproteiny metabolismus MeSH
- RNA rostlin genetika metabolismus MeSH
- tabák * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribonukleoproteiny MeSH
- RNA rostlin MeSH
Here, we present a protocol for labeling and live visualization of RNA-protein complexes in the form of ribonucleoprotein particles (RNPs) in tobacco pollen tubes. We describe steps for constructing RNA-pp7/MS2 tag and biolistic gene-gun-mediated pollen transformation. We then provide detailed procedures for RNA labeling using PP7 aptamer nascent RNA tagging and a fluorescently labeled Pseudomonas aeruginosa PP7 bacteriophage coat protein (PCP) reporter that binds to PP7 RNA stem loops. This protocol is adaptable to other cell types by employing tissue-specific promoters.
Zobrazit více v PubMed
Alamos S., Reimer A., Niyogi K.K., Garcia H.G. Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics. Nat. Plants. 2021;7:1037–1049. doi: 10.1038/s41477-021-00976-0. PubMed DOI PMC
Carey J., Cameron V., De Haseth P.L., Uhlenbeck O.C. Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry. 1983;22:2601–2610. doi: 10.1021/bi00280a002. PubMed DOI
Johansson H.E., Liljas L., Uhlenbeck O.C. RNA recognition by the MS2 phage coat protein. Semin. Virol. 1997;8:176–185. doi: 10.1006/smvy.1997.0120. DOI
Peabody D.S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 1993;12:595–600. doi: 10.1002/j.1460-2075.1993.tb05691.x. PubMed DOI PMC
Valegård K., Murray J.B., Stonehouse N.J., van den Worm S., Stockley P.G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J. Mol. Biol. 1997;270:724–738. doi: 10.1006/jmbi.1997.1144. PubMed DOI
Olsthoorn R.C., Garde G., Dayhuff T., Atkins J.F., Van Duin J. Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures. Virology. 1995;206:611–625. doi: 10.1016/s0042-6822(95)80078-6. PubMed DOI
Tars K., Fridborg K., Bundule M., Liljas L. The three-dimensional structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7-Å resolution. Virology. 2000;272:331–337. doi: 10.1006/viro.2000.0373. PubMed DOI
Lim F., Peabody D.S. RNA recognition site of PP7 coat protein. Nucleic Acids Res. 2002;30:4138–4144. doi: 10.1093/nar/gkf552. PubMed DOI PMC
Li Z., Zhang P., Zhang R., Wang X., Tse Y.C., Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep. 2021;35 doi: 10.1016/j.celrep.2021.109072. PubMed DOI
Wu B., Chen J., Singer R.H. Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci. Rep. 2014;4:3615. doi: 10.1038/srep03615. PubMed DOI PMC
Chao J.A., Patskovsky Y., Almo S.C., Singer R.H. Structural basis for the coevolution of a viral RNA–protein complex. Nat. Struct. Mol. Biol. 2008;15:103–105. doi: 10.1038/nsmb1327. PubMed DOI PMC
Lim F., Downey T.P., Peabody D.S. Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J. Biol. Chem. 2001;276:22507–22513. doi: 10.1074/jbc.M102411200. PubMed DOI
Wu B., Chao J.A., Singer R.H. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 2012;102:2936–2944. doi: 10.1016/j.bpj.2012.05.017. PubMed DOI PMC
Müller A.O., Blersch K.F., Gippert A.L., Ischebeck T. Tobacco pollen tubes–a fast and easy tool for studying lipid droplet association of plant proteins. Plant J. 2017;89:1055–1064. doi: 10.1111/tpj.13441. PubMed DOI
Noack L.C., Pejchar P., Sekereš J., Jaillais Y., Potocký M. Transient gene expression as a tool to monitor and manipulate the levels of acidic phospholipids in plant cells. Methods Mol. Biol. 2019;1992:189–199. doi: 10.1007/978-1-4939-9469-4_12. PubMed DOI
Karimi M., Depicker A., Hilson P. Recombinational cloning with plant gateway vectors. Plant Physiol. 2007;145:1144–1154. doi: 10.1104/pp.107.106989. PubMed DOI PMC
Billey E., Hafidh S., Cruz-Gallardo I., Litholdo C.G., Jean V., Carpentier M.C., Picart C., Kumar V., Kulichova K., Maréchal E., et al. LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell. 2021;33:2637–2661. doi: 10.1093/plcell/koab131. PubMed DOI PMC
Hafidh S., Fíla J., Honys D. Male gametophyte development and function in angiosperms: a general concept. Plant Reprod. 2016;29:31–51. doi: 10.1007/s00497-015-0272-4. PubMed DOI
Hafidh S., Honys D. Reproduction multitasking: the male gametophyte. Annu. Rev. Plant Biol. 2021;72:581–614. doi: 10.1146/annurev-arplant-080620-021907. PubMed DOI