A protocol for in vivo RNA labeling and visualization in tobacco pollen tubes

. 2024 Dec 20 ; 5 (4) : 103433. [epub] 20241115

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39549237
Odkazy

PubMed 39549237
PubMed Central PMC11609635
DOI 10.1016/j.xpro.2024.103433
PII: S2666-1667(24)00598-7
Knihovny.cz E-zdroje

Here, we present a protocol for labeling and live visualization of RNA-protein complexes in the form of ribonucleoprotein particles (RNPs) in tobacco pollen tubes. We describe steps for constructing RNA-pp7/MS2 tag and biolistic gene-gun-mediated pollen transformation. We then provide detailed procedures for RNA labeling using PP7 aptamer nascent RNA tagging and a fluorescently labeled Pseudomonas aeruginosa PP7 bacteriophage coat protein (PCP) reporter that binds to PP7 RNA stem loops. This protocol is adaptable to other cell types by employing tissue-specific promoters.

Zobrazit více v PubMed

Alamos S., Reimer A., Niyogi K.K., Garcia H.G. Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics. Nat. Plants. 2021;7:1037–1049. doi: 10.1038/s41477-021-00976-0. PubMed DOI PMC

Carey J., Cameron V., De Haseth P.L., Uhlenbeck O.C. Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry. 1983;22:2601–2610. doi: 10.1021/bi00280a002. PubMed DOI

Johansson H.E., Liljas L., Uhlenbeck O.C. RNA recognition by the MS2 phage coat protein. Semin. Virol. 1997;8:176–185. doi: 10.1006/smvy.1997.0120. DOI

Peabody D.S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 1993;12:595–600. doi: 10.1002/j.1460-2075.1993.tb05691.x. PubMed DOI PMC

Valegård K., Murray J.B., Stonehouse N.J., van den Worm S., Stockley P.G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J. Mol. Biol. 1997;270:724–738. doi: 10.1006/jmbi.1997.1144. PubMed DOI

Olsthoorn R.C., Garde G., Dayhuff T., Atkins J.F., Van Duin J. Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures. Virology. 1995;206:611–625. doi: 10.1016/s0042-6822(95)80078-6. PubMed DOI

Tars K., Fridborg K., Bundule M., Liljas L. The three-dimensional structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7-Å resolution. Virology. 2000;272:331–337. doi: 10.1006/viro.2000.0373. PubMed DOI

Lim F., Peabody D.S. RNA recognition site of PP7 coat protein. Nucleic Acids Res. 2002;30:4138–4144. doi: 10.1093/nar/gkf552. PubMed DOI PMC

Li Z., Zhang P., Zhang R., Wang X., Tse Y.C., Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep. 2021;35 doi: 10.1016/j.celrep.2021.109072. PubMed DOI

Wu B., Chen J., Singer R.H. Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci. Rep. 2014;4:3615. doi: 10.1038/srep03615. PubMed DOI PMC

Chao J.A., Patskovsky Y., Almo S.C., Singer R.H. Structural basis for the coevolution of a viral RNA–protein complex. Nat. Struct. Mol. Biol. 2008;15:103–105. doi: 10.1038/nsmb1327. PubMed DOI PMC

Lim F., Downey T.P., Peabody D.S. Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J. Biol. Chem. 2001;276:22507–22513. doi: 10.1074/jbc.M102411200. PubMed DOI

Wu B., Chao J.A., Singer R.H. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 2012;102:2936–2944. doi: 10.1016/j.bpj.2012.05.017. PubMed DOI PMC

Müller A.O., Blersch K.F., Gippert A.L., Ischebeck T. Tobacco pollen tubes–a fast and easy tool for studying lipid droplet association of plant proteins. Plant J. 2017;89:1055–1064. doi: 10.1111/tpj.13441. PubMed DOI

Noack L.C., Pejchar P., Sekereš J., Jaillais Y., Potocký M. Transient gene expression as a tool to monitor and manipulate the levels of acidic phospholipids in plant cells. Methods Mol. Biol. 2019;1992:189–199. doi: 10.1007/978-1-4939-9469-4_12. PubMed DOI

Karimi M., Depicker A., Hilson P. Recombinational cloning with plant gateway vectors. Plant Physiol. 2007;145:1144–1154. doi: 10.1104/pp.107.106989. PubMed DOI PMC

Billey E., Hafidh S., Cruz-Gallardo I., Litholdo C.G., Jean V., Carpentier M.C., Picart C., Kumar V., Kulichova K., Maréchal E., et al. LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell. 2021;33:2637–2661. doi: 10.1093/plcell/koab131. PubMed DOI PMC

Hafidh S., Fíla J., Honys D. Male gametophyte development and function in angiosperms: a general concept. Plant Reprod. 2016;29:31–51. doi: 10.1007/s00497-015-0272-4. PubMed DOI

Hafidh S., Honys D. Reproduction multitasking: the male gametophyte. Annu. Rev. Plant Biol. 2021;72:581–614. doi: 10.1146/annurev-arplant-080620-021907. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...