Sacroiliac joint auricular surface morphology modulates its mechanical environment

. 2025 Feb ; 246 (2) : 258-271. [epub] 20241118

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39556079

Grantová podpora
24-10862S Czech Science Foundation

The sacroiliac joint (SIJ) exhibits significant variation in auricular surface morphology. This variation influences the mechanics of the SIJ, a central node for transmitting mechanical energy from upper body to lower limbs and vice versa. The impact of the auricular surface morphology on stress and deformation in the SIJ remains poorly understood to date. Computed tomography scans obtained from 281 individuals were included to extract the geometry of the pelvic ring. Then, the auricular surface area, SIJ cartilage thickness, and total SIJ cartilage volume were identified. Based on these reconstructions, 281 finite element models were created to simulate SIJ mechanical loading. It was found that SIJ cartilage thickness only weakly depended on age or laterality, while being strongly sex sensitive. Auricular surface area and SIJ cartilage volume depended weakly and non-linearly on age, peaking around menopause in females, but without significant laterality effect. Larger SIJs, characterized by greater auricular area and cartilage volume, exhibited reduced stress and deformation under loading. These findings highlight the significant role of SIJ morphology in its biomechanical response, suggesting a potential link between morphological variations and the risk of SIJ dysfunction. Understanding this relationship could improve diagnosis and targeted treatment strategies for SIJ-related conditions.

Zobrazit více v PubMed

Arnbak, B. , Jensen, T.S. , Egund, N. , Zejden, A. , Hørslev‐Petersen, K. , Manniche, C. et al. (2016) Prevalence of degenerative and Spondyloarthritis‐related magnetic resonance Imaging findings in the spine and sacroiliac joints in patients with persistent low back pain. European Radiology, 26, 1191–1203. Available from: 10.1007/s00330-015-3903-0 PubMed DOI

Avants, B.B. , Yushkevich, P. , Pluta, J. , Minkoff, D. , Korczykowski, M. , Detre, J. et al. (2010) The optimal template effect in hippocampus studies of diseased populations. NeuroImage, 49(3), 2457. Available from: 10.1016/j.neuroimage.2009.09.062 PubMed DOI PMC

Cihan, Ö.F. , Karabulut, M. , Ömer Faruk, C. & Mehmet, K. (2023) Morphometric examination of the sacroiliac region and variable positions of the sacral auricular surface: anatomical classification and importance. Cureus, 15, e33792. Available from: 10.7759/cureus.33792 PubMed DOI PMC

Coates, L.C. , Baraliakos, X. , Blanco, F.J. , Alonso Blanco‐Morales, E. , Braun, J. , Chandran, V. et al. (2021) The phenotype of axial Spondyloarthritis: is it dependent on HLA–B27 status? Arthritis Care & Research, 73, 856–860. Available from: 10.1002/acr.24174 PubMed DOI

Egund, N. & Jurik, A.G. (2014) Anatomy and histology of the sacroiliac joints. Seminars in Musculoskeletal Radiology, 18, 332–340. Available from: 10.1055/s-0034-1375574 PubMed DOI

Enix, D.E. & Mayer, J.M. (2019) Sacroiliac joint hypermobility biomechanics and what it means for health care providers and patients. PM & R: The Journal of Injury, Function, and Rehabilitation, 11, S32–S39. Available from: 10.1002/pmrj.12176 PubMed DOI

Geuzaine, C. & Remacle, J.‐F. (2009) Gmsh: A 3‐D finite element mesh generator with built‐in pre‐and post‐processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331. Available from: 10.1002/nme.2579 DOI

Hammer, N. , Scholze, M. , Kibsgård, T. , Klima, S. , Schleifenbaum, S. , Seidel, T. et al. (2019) Physiological in vitro sacroiliac joint motion: A study on three‐dimensional posterior pelvic ring kinematics. Journal of Anatomy, 234(3), 346–358. Available from: 10.1111/joa.12924 PubMed DOI PMC

Hammer, N. & Klima, S. (2019) In‐Silico pelvis and sacroiliac joint motion—a review on published research using numerical analyses. Clinical biomechanics, 61, 95–104. Available from: 10.1016/j.clinbiomech.2018.12.005 PubMed DOI

Henyš, P. , Vořechovský, M. , Kuchař, M. , Heinemann, A. , Kopal, J. , Ondruschka, B. et al. (2021) Bone mineral density modeling via random field: normality, stationarity, sex and age dependence. Computer Methods and Programs in Biomedicine, 210, 106353. Available from: 10.1016/j.cmpb.2021.106353 PubMed DOI

Henyš, P. , Vořechovský, M. , Stebel, J. , Kuchař, M. & Exner, P. (2022) From computed tomography to finite element space: A unified bone material mapping strategy. Clinical biomechanics, 97, 105704. Available from: 10.1016/j.clinbiomech.2022.105704 PubMed DOI

Holstege, G. (2005) Micturition and the soul. Journal of Comparative Neurology, 493(1), 15–20. Available from: 10.1002/cne.20785 PubMed DOI

Huang, Z. , Zhang, Z. , Feng, Z. , Yan, Y. , Qingan, Z. & Li, Y. (2023) Effects of manipulations of oblique pulling on the biomechanics of the sacroiliac joint: A cadaveric study. BMC Musculoskeletal Disorders, 24, 55. Available from: 10.1186/s12891-023-06175-6 PubMed DOI PMC

Ito, K. , Morito, T. & Gamada, K. (2020) The association between sacral morphology and sacroiliac joint conformity demonstrated on CT‐based bone models. Clinical Anatomy, 33(6), 880–886. Available from: 10.1002/ca.23579 PubMed DOI

Jolesz, F.A. , Imaging, I. & Therapy, I.‐G. (2014) Intraoperative imaging and image‐guided therapy. New York: Springer Science & Business Media. Available from: 10.1007/978-1-4614-7657-3 DOI

Khan, N. , Peterson, A.C. , Aubert, B. , Morris, A. , Atkins, P.R. , Lenz, A.L. et al. (2023) Statistical multi‐level shape models for scalable modeling of multi‐organ anatomies. Frontiers in Bioengineering and Biotechnology, 11, 1089113. Available from: 10.3389/fbioe.2023.1089113 PubMed DOI PMC

Kiapour, A. , Joukar, A. , Elgafy, H. , Erbulut, D.U. , Agarwal, A. & Goel, V.K. (2019) Biomechanics of the sacroiliac joint: anatomy, function, biomechanics, sexual dimorphism, and causes of pain. The International Journal of Spine Surgery, 14, S3–S13. Available from: 10.14444/6077 PubMed DOI PMC

Lösel, P.D. , van de Kamp, T. , Jayme, A. , Ershov, A. , Faragó, T. , Pichler, O. et al. (2020) ‘Introducing Biomedisa as an open‐source online platform for biomedical image segmentation’. Nature. Communications, 11(1), 5577. Available from: 10.1038/s41467-020-19303-w PubMed DOI PMC

Maas, S.A. , Ateshian, G.A. & Weiss, J.A. (2017) FEBio: history and advances. Annual Review of Biomedical Engineering, 19, 279–299. Available from: 10.1146/annurev-bioeng-071516-044738 PubMed DOI PMC

Maksymowych, W.P. , Lambert, R.G. , Østergaard, M. , Pedersen, S.J. , Machado, P.M. , Weber, U. et al. (2019) MRI lesions in the sacroiliac joints of patients with Spondyloarthritis: An update of definitions and validation by the ASAS MRI working group. Annals of the Rheumatic Diseases, 78, 1550–1558. Available from: 10.1136/annrheumdis-2019-215589 PubMed DOI

McCormick, M. , Liu, X. , Jomier, J. , Marion, C. & Ibanez, L. (2014) ITK: enabling reproducible research and Open Science. Frontiers in Neuroinformatics, 8, 13. Available from: 10.3389/fninf.2014.00013 PubMed DOI PMC

McInnes, L. , Healy, J.J. , Saul, N. & Großberger, L. (2018) Umap: uniform manifold approximation and projection. Journal of Open Source Software, 3(29), 861. Available from: 10.21105/joss.00861 DOI

McLauchlan, G.J. & Gardner, D.L. (2002) Sacral and iliac articular cartilage thickness and cellularity: relationship to subchondral bone end‐plate thickness and cancellous bone density. Rheumatology, 41(4), 375–380. Available from: 10.1093/rheumatology/41.4.375 PubMed DOI

Miller, A.N. , Chip, M.L. & Jr, R. (2012) Variations in sacral morphology and implications for Iliosacral screw fixation. JAAOS‐Journal of the American Academy of Orthopaedic Surgeons, 20(1), 8–16. Available from: 10.5435/JAAOS-20-01-008 PubMed DOI

Navallas, M. , Ares, J. , Brigitte Beltrán, M. , Lisbona, J.M. & Solano, A. (2013) Sacroiliitis associated with axial Spondyloarthropathy: new concepts and latest trends. Radiographics, 33, 933–956. Available from: 10.1148/rg.334125025 PubMed DOI

Nishi, K. , Sawamoto, K. , Imamura, T. , Okamoto, K. , Wakebe, T. , Ogami, K. et al. (2016) Degenerative changes of the sacroiliac auricular joint surface—validation of influential factors. Anatomical Science International, 92, 530–538. Available from: 10.1007/s12565-016-0354-x PubMed DOI

Nishi, K. , Sawamoto, K. , Oyamada, J. , Okamoto, K. , Ogami‐Takamura, K. , Hasegawa, T. et al. (2019) Sex‐based differences in human sacroiliac joint shape: A three‐dimensional morphological analysis of the iliac auricular surface of modern Japanese macerated bones. Anatomical Science International, 95, 219–229. Available from: 10.1007/s12565-019-00513-2 PubMed DOI

Pedregosa, F. , Varoquaux, G. , Gramfort, A. , Michel, V. , Thirion, B. , Grisel, O. et al. (2011) Scikit‐learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

Poilliot, A. , Hammer, N. , Toranelli, M. , Doyle, T. , Gay, M.H.‐P. & Müller‐Gerbl, M. (2023) Influence of size and shape of the auricular surfaces on subchondral bone density distribution in the sacroiliac joint. Journal of Anatomy, 243(3), 475–485. Available from: 10.1111/joa.13857 PubMed DOI PMC

Poilliot, A. , Hammer, N. , Toranelli, M. , Gay, M.H.‐P. & Müller‐Gerbl, M. (2022) Auricular surface morphology and surface area does not influence subchondral bone density distribution in the dysfunctional sacroiliac joint. Clinical Anatomy, 36, 447–456. Available from: 10.1002/ca.23980 PubMed DOI

Prassopoulos, P.K. , Faflia, C.P. , Voloudaki, A.E. & Gourtsoyiannis, N.C. (1999) Sacroiliac joints: anatomical variants on CT. Journal of Computer Assisted Tomography, 23(2), 323–327. Available from: 10.1097/00004728-199903000-00029 PubMed DOI

Quiney, L. , Stewart, J. , Routh, J. & Dyson, S. (2022) Gross post‐mortem and histological features in 27 horses with confirmed lumbosacral region pain and five control horses: A descriptive cadaveric study. Equine Veterinary Journal, 54, 726–739. Available from: 10.1111/evj.13488 PubMed DOI

Rafei, E. , Mazen, S.B. , Lefebvre, G. , Machuron, F. , Capon, B. , Flipo, R.‐M. et al. (2018) Sacroiliac joints: anatomical variations on MR images. European Radiology, 28, 5328–5337. Available from: 10.1007/s00330-018-5540-x PubMed DOI

Ramezani, M. , Klima, S. , le Clerc, P. , de la Herverie, J. , le Campo, J.‐B. , Joncour, C.R. et al. (2019) In Silico pelvis and sacroiliac joint motion: refining a model of the human Osteoligamentous pelvis for assessing physiological load deformation using an inverted validation approach. BioMed Research International, 2019, 1–12. Available from: 10.1155/2019/3973170 PubMed DOI PMC

Rashbaum, R.F. , Ohnmeiss, D.D. , Lindley, E.M. , Kitchel, S.H. & Patel, V.V. (2016) Sacroiliac joint pain and its treatment. Clinical Spine Surgery a Spine Publication, 29, 42–48. Available from: 10.1097/bsd.0000000000000359 PubMed DOI

Shibata, Y. , Shirai, Y. & Miyamoto, M. (2002) The aging process in the sacroiliac joint: helical computed tomography analysis. Journal of Orthopaedic Science, 7(1), 12–18. Available from: 10.1007/s776-002-8407-1 PubMed DOI

Shrout, P.E. & Fleiss, J.L. (1979) Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428. Available from: 10.1037/0033-2909.86.2.420 PubMed DOI

Si, H. (2015) Tetgen, a delaunay‐based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 41(2), 1–36. Available from: 10.1145/2629697 DOI

Tian, Q. , Peng, C. , Li, K. , Luan, H. , Liu, X. , Na, L. et al. (2022) Efficacy analysis of anterior debridement and bone graft fusion in the treatment of sacroiliac joint tuberculous arthritis: A retrospective analysis of 17 patients. BMC Musculoskeletal Disorders, 23, 645. Available from: 10.1186/s12891-022-05600-6 PubMed DOI PMC

Toyohara, R. , Kurosawa, D. , Hammer, N. , Werner, M. , Honda, K. , Sekiguchi, Y. et al. (2020) Finite element analysis of load transition on sacroiliac joint during bipedal walking. Scientific Reports, 10(1), 13683. Available from: 10.1038/s41598-020-70676-w PubMed DOI PMC

Valojerdy, M.R. & Hogg, D.A. (1989) Sex differences in the morphology of the auricular surfaces of the human sacroiliac joint. Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists, 2(2), 63–67. Available from: 10.1002/ca.980020203 DOI

Vilensky, J.A. , O'Connor, B.L. , Fortin, J.D. , Merkel, G.J. , Jiménez, A.M. , Scofield, B.A. et al. (2002) Histologic analysis of neural elements in the human sacroiliac joint. Spine, 27, 1202–1207. Available from: 10.1097/00007632-200206010-00012 PubMed DOI

Virtanen, P. , Gommers, R. , Oliphant, T.E. , Haberland, M. , Reddy, T. , Cournapeau, D. et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods, 17, 261–272. Available from: 10.1038/s41592-019-0686-2 PubMed DOI PMC

Volker, A. , Steinke, H. & Heyde, C.‐E. (2021) The sacroiliac joint as a cause of pain–review of the sacroiliac joint morphology and models for pain genesis. Zeitschrift für Orthopädie und Unfallchirurgie, 160, 507–516. Available from: 10.1055/a-1398-6055 PubMed DOI

Wang, J. (2023) An intuitive tutorial to Gaussian processes regression. Computing in Science & Engineering, 25, 4–11. Available from: 10.1109/MCSE.2023.3342149 DOI

Wingerden, J.P.v. , Vleeming, A. , Buyruk, H.M. & Raissadat, K. (2004) Stabilization of the sacroiliac joint in vivo: verification of muscular contribution to force closure of the pelvis. European Spine Journal, 13, 199–205. Available from: 10.1007/s00586-003-0575-2 PubMed DOI PMC

Wolf, I. , Vetter, M. , Wegner, I. , Böttger, T. , Nolden, M. , Schöbinger, M. et al. (2005) The medical Imaging interaction toolkit. Medical Image Analysis, 9(6), 594–604. Available from: 10.1016/j.media.2005.04.005 PubMed DOI

Zou, K.H. , Warfield, S.K. , Bharatha, A. , Tempany, C.M.C. , Kaus, M.R. , Haker, S.J. et al. (2004) Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Academic Radiology, 11(2), 178–189. Available from: 10.1016/S1076-6332(03)00671-8 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

BoneDat, a database of standardized bone morphology for in silico analyses

. 2025 Jun 20 ; 12 (1) : 1043. [epub] 20250620

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...