Which Measure of Stone Burden is the Best Predictor of Interventional Outcomes in Urolithiasis: A Systematic Review and Meta-analysis by the YAU Urolithiasis Working Group and EAU Urolithiasis Guidelines Panel
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39651399
PubMed Central
PMC11625283
DOI
10.1016/j.euros.2024.10.024
PII: S2666-1683(24)01412-5
Knihovny.cz E-zdroje
- Klíčová slova
- Guidelines, Multidimensional measures, Predictor, Single linear measurement, Stone burden, Stone-free rate, Urolithiasis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND AND OBJECTIVE: Stone size has traditionally been measured in one dimension. This is reflected in most of the literature and in the EAU guidelines. However, recent studies have shown that multidimensional measures provide better prediction of outcomes. METHODS: We performed a systematic review and meta-analysis of the prognostic accuracy of measures of stone size (PROSPERO reference CRD42022346967). We considered all studies reporting prognostic accuracy statistics on any intervention for kidney stones (extracorporeal shockwave lithotripsy [ESWL], ureterorenoscopy [URS], or percutaneous nephrolithotomy [PCNL]; Population) using multiplane measurements of stone burden (area in mm2 or volume in mm3; Intervention) in comparison to single-plane measurements of stone burden (size in mm; Intervention) for the study-defined stone-free rate (Outcome) in a PICO-framed question. We also assessed complication rates (overall and by Clavien-Dindo grade) and the operative time as secondary outcomes. Searches were made between 1970 and August 2023. We used the DeLong method to compare receiver operating characteristic (ROC) curves. KEY FINDINGS AND LIMITATIONS: Of 24 studies included in the review, 12 were eligible for comparative analysis with the DeLong test following meta-analysis of prognostic accuracy. For prediction of stone-free status, the area under the ROC curve (AUC) was significantly higher for stone volume than for stone size (0.71 vs 0.67; p < 0.001). Subanalyses confirmed this for ESWL and URS, but not for PCNL. For URS, the AUC was also significantly higher for stone area than for stone size (0.79 vs 0.77; p < 0.001). Throughout all analyses, there was no difference in AUC between stone area and stone volume. There was high risk of bias for all analyses apart from the URS subanalyses. CONCLUSIONS AND CLINICAL IMPLICATIONS: According to the limited data currently available, stone-free rates are predicted with significantly higher accuracy using multidimensional measures of stone burden in comparison to a single linear measurement. PATIENT SUMMARY: We reviewed different ways of measuring the size of stones in the kidney or urinary tract and compared their accuracy in predicting stone-free rates after treatment. We found that measurement of the stone area (2 dimensions) or stone volume (3 dimensions) is better than stone diameter (1 dimension) in predicting stone-free status after treatment.
Department of Surgery Royal College of Surgeons in Ireland Dublin Ireland
Department of Urology 1st Faculty of Medicine Charles University Prague Czechia
Department of Urology and Renal Transplantation Aix Marseille University Marseille France
Department of Urology Beaumont Hospital Dublin Ireland
Department of Urology Bruederkrankenhaus Trier Johannes Gutenberg University Mainz Trier Germany
Department of Urology Freeman Hospital Newcastle upon Tyne UK
Department of Urology University Hospital of Ghent Ghent Belgium
Department of Urology University Hospital Southampton NHS Foundation Trust Southampton UK
Department of Urology University of Southern Denmark Odense Denmark
Division of Nephrology and Dialysis Department of Medicine University of Verona Verona Italy
Sant'Andrea Hospital Sapienza University Rome Italy
Urolithiasis Guidelines Panel European Association of Urology Arnhem The Netherlands
Zobrazit více v PubMed
Chewcharat A., Curhan G. Trends in the prevalence of kidney stones in the United States from 2007 to 2016. Urolithiasis. 2020;3:278–1213. doi: 10.1007/s00240-020-01210-w. PubMed DOI
Skolarikos A., Jung G., Neisius A., et al. European Association of Urology; Arnhem, The Netherlands: 2024. EAU guidelines on urolithiasis.
Jiang P., Xie L., Arada R., Patel R.M., Landman J., Clayman R.V. Qualitative review of clinical guidelines for medical and surgical management of urolithiasis: consensus and controversy 2020. J Urol. 2021;205:999–1008. doi: 10.1097/ju.0000000000001478. PubMed DOI
Panthier F., Kutchukian S., Ducousso H., et al. How to estimate stone volume and its use in stone surgery: a comprehensive review. Actas Urol Esp. 2024;48:71–78. doi: 10.1016/j.acuroe.2023.08.009. PubMed DOI
Moher D., Liberati A., Tetzlaff J., Altman D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6 PubMed PMC
Knoll T., Omar M.I., MacLennan S., et al. Key steps in conducting systematic reviews for underpinning clinical practice guidelines: methodology of the European Association of Urology. Eur Urol. 2018;73:290–300. doi: 10.1016/j.eururo.2017.08.016. PubMed DOI
Gheibi S., Mahmoodzadeh A., Kashfi K., Jeddi S., Ghasemi A. Data extraction from graphs using Adobe Photoshop: applications for meta-analyses. Int J Endocrinol Metab. 2019;17:e95216. PubMed PMC
Higgins J.P.T., Altman D.G., Gotzsche P.C., et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343 doi: 10.1136/bmj.d5928. PubMed DOI PMC
Hayden J.A., van der Windt D.A., Cartwright J.L., Côté P., Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280–286. doi: 10.7326/0003-4819-158-4-201302190-00009. PubMed DOI
Balduzzi S., Rücker G., Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. BMJ Mental Health. 2019;22:153. doi: 10.1136/ebmental-2019-300117. PubMed DOI PMC
Doebler P., Holling H., Sousa-Pinto B. The Comprehensive R Archive Network; 2015. Meta-analysis of diagnostic accuracy with mada.https://cran.r-project.org/web/packages/mada/vignettes/mada.pdf
Pérez-Fernández S., Martínez-Camblor P., Filzmoser P., Corral N. nsROC: an R package for non-standard ROC curve analysis. R J. 2019;10:55. doi: 10.32614/rj-2018-043. DOI
DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. PubMed
Akkas F., Culha M.G., Ayten A., et al. A novel model using computed tomography parameters to predict shock wave lithotripsy success in ureteral stones at different locations. Actas Urol Esp. 2022;46:114–121. doi: 10.1016/j.acuroe.2021.01.011. PubMed DOI
Bandi G., Meiners R.J., Pickhardt P.J., Nakada S.Y. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int. 2009;103:524–528. doi: 10.1111/j.1464-410x.2008.08069.x. PubMed DOI
Cui H.W., Tan T.K., Christiansen F.E., Osther P.J.S., Turney B.W. The utility of automated volume analysis of renal stones before and after shockwave lithotripsy treatment. Urolithiasis. 2021;49:219–226. doi: 10.1007/s00240-020-01212-8. PubMed DOI PMC
Diamand R., Idrissi-Kaitouni M., Coppens E., Roumeguère T., Legrand F. Évaluation de la taille des calculs urinaires avant urétéroscopie souple: quelle mesure choisir? Prog Urol. 2018;28:62–70. doi: 10.1016/j.purol.2017.09.014. PubMed DOI
Ergani B., Kozacioglu Z. Effects of three-dimensional measurement of the urinary stone size on the surgical outcomes of retrograde intrarenal stone surgery. J Urol Surg. 2021;8:111–117. doi: 10.4274/jus.galenos.2021.0032. DOI
Geng J.H., Tu H.P., Shih P.M.C., et al. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination. Kaohsiung J Med Sci. 2015;31:34–41. doi: 10.1016/j.kjms.2014.10.001. PubMed DOI PMC
Langenauer J., Betschart P., Hechelhammer L., et al. Advanced non-contrasted computed tomography post-processing by CT-calculometry (CT-CM) outperforms established predictors for the outcome of shock wave lithotripsy. World J Urol. 2018;36:2073–2080. doi: 10.1007/s00345-018-2348-x. PubMed DOI
Park H.S., Gong M.K., Yoon C.Y., Moon D.G., Cheon J., Choi Y.D. Computed tomography-based novel prediction model for the outcome of shockwave lithotripsy in proximal ureteral stones. J Endourol. 2016;30:810–816. doi: 10.1089/end.2016.0056. PubMed DOI
Tailly T., Nadeau B.R., Violette P.D., et al. Stone burden measurement by 3D reconstruction on noncontrast computed tomography is not a more accurate predictor of stone-free rate after percutaneous nephrolithotomy than 2D stone burden measurements. J Endourol. 2020;34:550–557. doi: 10.1089/end.2019.0718. PubMed DOI
Umemoto T., Hasegawa M., Kawakami M., et al. Impact of stone volume on treatment outcomes of percutaneous nephrolithotripsy. Asian J Endosc Surg. 2022;15:599–607. doi: 10.1111/ases.13059. PubMed DOI
Wang L.J., Wong Y.C., Chuang C.K., et al. Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics determined by unenhanced helical computed tomography: a multivariate analysis. Eur Radiol. 2005;15:2238–2243. doi: 10.1007/s00330-005-2742-9. PubMed DOI
Waqas M., Khan M.A., Iqbal M.W., Akbar M.K., Saqib I.U.D., Akhter S. Non-contrast computed tomography scan based parameters of ureteric stones affecting the outcome of extracorporeal shock wave lithotripsy. Cureus. 2017;9 doi: 10.7759/cureus.1227. PubMed DOI PMC
Xun Y., Li J., Geng Y., et al. Single extracorporeal shock-wave lithotripsy for proximal ureter stones: can CT texture analysis technique help predict the therapeutic effect? Eur J Radiol. 2018;107:84–89. doi: 10.1016/j.ejrad.2018.08.018. PubMed DOI
Kobayashi M., Waseda Y., Fuse H., Takazawa R. Variables measured on three-dimensional computed tomography are preferred for predicting the outcomes of shock wave lithotripsy. World J Urol. 2022;40:569–575. doi: 10.1007/s00345-021-03861-9. PubMed DOI
Merigot de Treigny O., Nasr E.B., Almont T., et al. The cumulated stone diameter: a limited tool for stone burden estimation. Urology. 2015;86:477–481. doi: 10.1016/j.urology.2015.06.018. PubMed DOI
Waqas M., Saqib I., Jamil M.I., Khan M.A., Akhter S. Evaluating the importance of different computed tomography scan-based factors in predicting the outcome of extracorporeal shock wave lithotripsy for renal stones. Investig Clin Urol. 2018;59:25–31. doi: 10.4111/icu.2018.59.1.25. PubMed DOI PMC
Ito H., Kawahara T., Terao H., et al. Utility and limitation of cumulative stone diameter in predicting urinary stone burden at flexible ureteroscopy with holmium laser lithotripsy: a single-center experience. PLoS One. 2013;8 doi: 10.1371/journal.pone.0065060. PubMed DOI PMC
Vuruskan E., Dilek O., Karkin K., Unal U., Ayhan L., Sener N.C. Volume should be used instead of diameter for kidney stones between 10 and 20 mm to determine the type of surgery and increase success. Urolithiasis. 2022;50:215–221. doi: 10.1007/s00240-022-01305-6. PubMed DOI
Inoue T., Hamamoto S., Okada S., et al. Single-session impact of high-power laser with Moses technology for lower pole stones in retrograde intrarenal surgery: retrospective study. J Clin Med. 2022;12:301. doi: 10.3390/jcm12010301. PubMed DOI PMC
Oktay C., Çoraplı M., Tutuş A. The usefulness of the Hounsfield unit and stone heterogeneity variation in predicting the shockwave lithotripsy outcome. Diagn Interv Radiol. 2022;28:187–192. doi: 10.5152/dir.2022.20945. PubMed DOI PMC
Guner E., Danacioglu Y.O., Akkas F., et al. Factors predicting duration and success of semirigid ureteroscopy for ureteral stones in different localizations. Arch Esp Urol. 2021;74:335–342. PubMed
Ito H., Kawahara T., Terao H., et al. Evaluation of preoperative measurement of stone surface area as a predictor of stone-free status after combined ureteroscopy with holmium laser lithotripsy: a single-center experience. J Endourol. 2013;27:715–721. doi: 10.1089/end.2012.0548. PubMed DOI
Lee H.Y., Yang Y.H., Lee Y.L., et al. Noncontrast computed tomography factors that predict the renal stone outcome after shock wave lithotripsy. Clin Imaging. 2015;39:845–850. doi: 10.1016/j.clinimag.2015.04.010. PubMed DOI
Ito H., Kawahara T., Terao H., et al. The most reliable preoperative assessment of renal stone burden as a predictor of stone-free status after flexible ureteroscopy with holmium laser lithotripsy: a single-center experience. Urology. 2012;80:524–528. doi: 10.1016/j.urology.2012.04.001. PubMed DOI
Yamashita S., Iwahashi Y., Deguchi R., Kikkawa K., Kohjimoto Y., Hara I. Three-dimensional mean stone density on non-contrast computed tomography can predict ureteroscopic lithotripsy outcome in ureteral stone cases. Urolithiasis. 2020;48:547–552. doi: 10.1007/s00240-020-01178-7. PubMed DOI
Jones P., Pietropaolo A., Chew B.H., Somani B.K. Atlas of scoring systems, grading tools, and nomograms in endourology: a comprehensive overview from the TOWER Endourological Society research group. J Endourol. 2021;35:1863–1882. doi: 10.1089/end.2021.0124. PubMed DOI