Emerging biologic and clinical implications of miR-182-5p in gynecologic cancers
Status Publisher Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39661239
DOI
10.1007/s12094-024-03822-9
PII: 10.1007/s12094-024-03822-9
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarker, Gynecologic cancers, MiR-182-5p, MiRNAs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
Department of Immunology School of Medicine Isfahan University of Medical Sciences Isfahan Iran
Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
Physiology Graduate Faculty North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Matulic M, Grškovic P, Petrovic A, Begic V, Harabajsa S, Korac P. miRNA in molecular diagnostics. Bioengineering. 2022;9:459. PubMed DOI PMC
Najafi S, Ghaedrahmati F, Abouali Gale Dari M, Farzaneh M, Mohammad Jafari R. The regulatory role of circular RNAs as miRNA sponges in cervical cancer. Curr Signal Transduct Ther. 2023;18:63–71. DOI
Good DJ. Non-coding RNAs in human health and diseases. Genes. 2023;14:1429. PubMed DOI PMC
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, et al. Unveiling mesenchymal stem cells’ regenerative potential in clinical applications: insights in miRNA and lncRNA implications. Cells. 2023;12:2559. PubMed DOI PMC
Sun P, Wang J, Ilyasova T, Shumadalova A, Agaverdiev M, Wang C. The function of miRNAs in the process of kidney development. Non-coding RNA Res. 2023. https://doi.org/10.1016/j.ncrna.2023.08.009 . DOI
Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting specificity. Mol Cell. 2016;64:320–33. PubMed DOI PMC
Yadav P, Tamilselvan R, Harita M, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. Biochim Biophys Acta Gene Regul Mech. 2024;1867:195022. PubMed DOI
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes (Basel). 2023;14(7):1375. PubMed DOI
Miśkiewicz J, Mielczarek-Palacz A, Gola JM. MicroRNAs as potential biomarkers in gynecological cancers. Biomedicines. 2023;11:1704. PubMed DOI PMC
Sameti P, Tohidast M, Amini M, Bahojb Mahdavi SZ, Najafi S, Mokhtarzadeh A. The emerging role of MicroRNA-182 in tumorigenesis; a promising therapeutic target. Cancer Cell Int. 2023;23:134. PubMed DOI PMC
Davari M, Soheili Z-S, Latifi-Navid H, Samiee S. Potential involvement of miR-183/96/182 cluster-gene target interactions in transdifferentiation of human retinal pigment epithelial cells into retinal neurons. Biochem Biophys Res Commun. 2023;663:87–95. PubMed DOI
Guzzolino E, Pellegrino M, Ahuja N, Garrity D, D’Aurizio R, Groth M, et al. miR-182-5p is an evolutionarily conserved Tbx5 effector that impacts cardiac development and electrical activity in zebrafish. Cell Mol Life Sci. 2020;77:3215–29. PubMed DOI
Pei G, Chen L, Wang Y, He C, Fu C, Wei Q. Role of miR-182 in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol. 2023;11:1181515. PubMed DOI PMC
Li P, Hong G, Zhan W, Deng M, Tu C, Wei J, et al. Endothelial progenitor cell derived exosomes mediated miR-182-5p delivery accelerate diabetic wound healing via down-regulating PPARG. Int J Med Sci. 2023;20:468. PubMed DOI PMC
Mendes DCC, Calvano Filho CMC, Garcia N, Ricci MD, Soares Júnior JM, Carvalho KC, et al. Could be FOXO3a, miR-96–5p and miR-182–5p useful for Brazilian women with luminal A and triple negative breast cancers prognosis and target therapy? Clinics. 2023;78:100155. PubMed DOI PMC
Wang J, Jiang W, Liu S, Shi K, Zhang Y, Chen Y, et al. Exosome-derived miR-182-5p promoted cholangiocarcinoma progression and vasculogenesis by regulating ADK/SEMA5a/PI3K pathway. Liver Int. 2024;44:370–88. PubMed DOI
Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discovery. 2010;9:775–89. PubMed DOI
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes. 2023;14:1375. PubMed DOI PMC
Boutla A, Delidakis C, Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res. 2003;31:4973–80. PubMed DOI PMC
Kamali MJ, Salehi M, Fatemi S, Moradi F, Khoshghiafeh A, Ahmadifard M. Locked nucleic acid (LNA): a modern approach to cancer diagnosis and treatment. Exp Cell Res. 2023;423: 113442. PubMed DOI
Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci. 2008;105:13556–61. PubMed DOI PMC
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol. 2018;15:338–52. PubMed DOI PMC
Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14:369–81. PubMed DOI
Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51:836–45. PubMed DOI
Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood. 2009;114:5331–41. PubMed DOI PMC
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards clinical implementation of adeno-associated virus (AAV) vectors for cancer gene therapy: current status and future perspectives. Cancers. 1889;2020:12.
Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, et al. microRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia. Blood. 2009;113:4391–402. PubMed DOI PMC
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43. PubMed DOI
Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Can Res. 2007;67:1424–9. DOI
Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–57. PubMed DOI
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33. PubMed DOI PMC
Cui Y, Qi Y, Ding L, Ding S, Han Z, Wang Y, et al. miRNA dosage control in development and human disease. Trends Cell Biol. 2023. https://doi.org/10.1016/j.tcb.2023.05.009 . PubMed DOI
Fu J-H, Yang S, Nan C-J, Zhou C-C, Lu D-Q, Li S, et al. MiR-182 affects renal cancer cell proliferation, apoptosis, and invasion by regulating PI3K/AKT/mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2018. https://doi.org/10.26355/eurrev_201801_14179 . PubMed DOI
Li Y, Zhang H, Li Y, Zhao C, Fan Y, Liu J, et al. MiR-182 inhibits the epithelial to mesenchymal transition and metastasis of lung cancer cells by targeting the Met gene. Mol Carcinog. 2018;57:125–36. PubMed DOI
Wang J, Xu Z, Chen X, Li Y, Chen C, Wang C, et al. MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting Toll-like receptor 4. Biochem Biophys Res Commun. 2018;505:677–84. PubMed DOI
Zhang L, Sun P, Zhang Y, Xu Y, Sun Y. miR-182-5p inhibits the pathogenic Th17 response in experimental autoimmune uveitis mice via suppressing TAF15. Biochem Biophys Res Commun. 2020;529:784–92. PubMed DOI
Xu J, Chen P, Yu C, Shi Q, Wei S, Li Y, et al. Hypoxic bone marrow mesenchymal stromal cells-derived exosomal miR-182-5p promotes liver regeneration via FOXO1-mediated macrophage polarization. FASEB J. 2022;36: e22553. PubMed DOI
Jin C, Gao S, Li D, Shi X, Hu Z, Wang C, et al. MiR-182-5p inhibits the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPPA. Int Heart J. 2020;61:822–30. PubMed DOI
Wang X, Wang G, Zhang X, Dou Y, Dong Y, Liu D, et al. Inhibition of microRNA-182-5p contributes to attenuation of lupus nephritis via Foxo1 signaling. Exp Cell Res. 2018;373:91–8. PubMed DOI
Tang S, Guo W, Kang L, Liang J. MiRNA-182-5p aggravates experimental ulcerative colitis via sponging Claudin-2. J Mol Histol. 2021;52:1215–24. PubMed DOI PMC
Loh H-Y, Norman BP, Lai K-S, Rahman NMANA, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci. 2019;20:4940. PubMed DOI PMC
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer. 2020;1874:188413. PubMed DOI
Wu X, Chen H, Wu M, Peng S, Zhang L. Downregulation of miR-182–5p inhibits the proliferation and invasion of triple-negative breast cancer cells through regulating TLR4/NF-κB pathway activity by targeting FBXW7. Ann Transl Med. 2020;8:995. PubMed DOI PMC
Ma C, He D, Tian P, Wang Y, He Y, Wu Q, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci. 2022;119: e2114006119. PubMed DOI PMC
Lei R, Tang J, Zhuang X, Deng R, Li G, Yu J, et al. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene. 2014;33:1287–96. PubMed DOI
Wo L, Lu D, Gu X. Knockdown of miR-182 promotes apoptosis via regulating RIP1 deubiquitination in TNF-α-treated triple-negative breast cancer cells. Tumor Biol. 2016;37:13733–42. DOI
Sharifi M, Moridnia A. Apoptosis-inducing and antiproliferative effect by inhibition of miR-182-5p through the regulation of CASP9 expression in human breast cancer. Cancer Gene Ther. 2017;24:75–82. PubMed DOI
Chiang CH, Chu PY, Hou MF, Hung WC. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res. 2016;6:1785–98. PubMed PMC
Wu X, Chen H, Wu M, Peng S, Zhang L. Downregulation of miR-182-5p inhibits the proliferation and invasion of triple-negative breast cancer cells through regulating TLR4/NF-κB pathway activity by targeting FBXW7. Ann Transl Med. 2020;8:995. PubMed DOI PMC
Zhao YS, Yang WC, Xin HW, Han JX, Ma SG. MiR-182-5p knockdown targeting PTEN inhibits cell proliferation and invasion of breast cancer cells. Yonsei Med J. 2019;60:148–57. PubMed DOI PMC
Wan P, He X, Han Y, Wang L, Yuan Z. Stat5 inhibits NLRP3-mediated pyroptosis to enhance chemoresistance of breast cancer cells via promoting miR-182 transcription. Chem Biol Drug Des. 2023;102:14–25. PubMed DOI
Bryja A, Zadka Ł, Farzaneh M, Zehtabi M, Ghasemian M, Dyszkiewicz-Konwińska M, et al. Small extracellular vesicles–A host for advanced bioengineering and “Trojan Horse” of non-coding RNAs. Life Sci. 2023;332:122126. PubMed DOI
Lu C, Zhao Y, Wang J, Shi W, Dong F, Xin Y, et al. Breast cancer cell-derived extracellular vesicles transfer miR-182-5p and promote breast carcinogenesis via the CMTM7/EGFR/AKT axis. Mol Med. 2021;27:78. PubMed DOI PMC
Chen ZH, Tian Y, Zhou GL, Yue HR, Zhou XJ, Ma HY, et al. CMTM7 inhibits breast cancer progression by regulating Wnt/β-catenin signaling. Breast Cancer Res. 2023;25:22. PubMed DOI PMC
Ma C, He D, Tian P, Wang Y, He Y, Wu Q, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci U S A. 2022. https://doi.org/10.1073/pnas.2114006119 . PubMed DOI PMC
Lu JT, Tan CC, Wu XR, He R, Zhang X, Wang QS, et al. FOXF2 deficiency accelerates the visceral metastasis of basal-like breast cancer by unrestrictedly increasing TGF-β and miR-182-5p. Cell Death Differ. 2020;27:2973–87. PubMed DOI PMC
Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, et al. circRNA_0025202 Regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 2019;27:1638–52. PubMed DOI PMC
Yu J, Wang H, Shen W, Zhou Y, Cui J, Li H, et al. Hsa_circ_0007823 overexpression suppresses the progression of triple-negative breast cancer via regulating miR-182-5p-FOXO1 axis. Breast Cancer. 2023;15:695–708. PubMed PMC
Zehtabi M, Akbarpour Z, Valizadeh S, Roosta Y, Khamaneh AM, Raeisi M. Investigation and confirmation of differentially expressed miRNAs, as well as target gene prediction in papillary thyroid cancer, with a special emphasis on the autophagy signaling pathway. Mol Biol Res Commun. 2022;11:173. PubMed PMC
Barsoum FS, Awad AS, Hussein NH, Eissa RA, El Tayebi HM. MALAT-1: LncRNA ruling miR-182/PIG-C/mesothelin triad in triple negative breast cancer. Pathol Res Pract. 2020;216: 153274. PubMed DOI
Jiang B, Liu Q, Gai J, Guan J, Li Q. LncRNA SLC16A1-AS1 regulates the miR-182/PDCD4 axis and inhibits the triple-negative breast cancer cell cycle. Immunopharmacol Immunotoxicol. 2022;44:534–40. PubMed DOI
Yue D, Qin X. miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells. Cancer Gene Ther. 2019;26:1–10. PubMed DOI
Dinami R, Pompili L, Petti E, Porru M, D’Angelo C, Di Vito S, et al. MiR-182-3p targets TRF2 and impairs tumor growth of triple-negative breast cancer. EMBO Mol Med. 2023;15: e16033. PubMed DOI
Murugesan M, Premkumar K. Integrative miRNA-mRNA functional analysis identifies miR-182 as a potential prognostic biomarker in breast cancer. Mol Omics. 2021;17:533–43. PubMed DOI
Kandil NS, Kandil LS, Mohamed R, Selima M, El Nemr M, Barakat AR, et al. The role of miRNA-182 and FOXO3 expression in breast cancer. Asian Pac J Cancer Prev. 2022;23:3361–70. PubMed DOI PMC
Darbeheshti F, Kadkhoda S, Keshavarz-Fathi M, Razi S, Bahramy A, Mansoori Y, et al. Investigation of BRCAness associated miRNA-gene axes in breast cancer: cell-free miR-182-5p as a potential expression signature of BRCAness. BMC Cancer. 2022;22:668. PubMed DOI PMC
Naser Al Deen N, Atallah Lanman N, Chittiboyina S, Lelièvre S, Nasr R, Nassar F, et al. A risk progression breast epithelial 3D culture model reveals Cx43/hsa_circ_0077755/miR-182 as a biomarker axis for heightened risk of breast cancer initiation. Sci Rep. 2021;11:2626. PubMed DOI PMC
Mansouri M, Peymani M, Mohamadynejad P. A genetic variant in the flanking region of miR-182 could decrease the susceptibility to the breast cancer risk in the iranian population. Nucleosides Nucleotides Nucleic Acids. 2020;39:806–17. PubMed DOI
McMullen M, Karakasis K, Rottapel R, Oza AM. Advances in ovarian cancer, from biology to treatment. Nature Cancer. 2021;2:6–8. PubMed DOI
Battistini C, Cavallaro U. Patient-derived in vitro models of ovarian cancer: powerful tools to explore the biology of the disease and develop personalized treatments. Cancers. 2023;15:368. PubMed DOI PMC
Liu C-J, Li H-Y, Gao Y, Xie G-Y, Chi J-H, Li G-L, et al. Platelet RNA signature independently predicts ovarian cancer prognosis by deep learning neural network model. Protein Cell. 2022;14:618–22. PMC
Ghafouri-Fard S, Shoorei H, Taheri M. miRNA profile in ovarian cancer. Exp Mol Pathol. 2020;113: 104381. PubMed DOI
Beg A, Parveen R, Fouad H, Yahia ME, Hassanein AS. Identification of driver genes and miRNAs in ovarian cancer through an integrated in-silico approach. Biology. 2023;12:192. PubMed DOI PMC
Marzec-Kotarska B, Cybulski M, Kotarski JC, Ronowicz A, Tarkowski R, Polak G, et al. Molecular bases of aberrant miR-182 expression in ovarian cancer. Genes Chromosom Cancer. 2016;55:877–89. PubMed DOI
Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci. 2008;105:7004–9. PubMed DOI PMC
Li Y, Li L. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis. J Ovarian Res. 2019;12:106. PubMed DOI PMC
Záveský L, Jandáková E, Weinberger V, Minář L, Hanzíková V, Dušková D, et al. Ovarian cancer: differentially expressed microRNAs in tumor tissue and cell-free ascitic fluid as potential novel biomarkers. Cancer Invest. 2019;37:440–52. PubMed DOI
Wu J, Wei JJ. HMGA2 and high-grade serous ovarian carcinoma. J Mol Med. 2013;91:1155–65. PubMed DOI
Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol. 2012;228:204–15. PubMed DOI
Sathipati SY, Ho SY. Identification of the miRNA signature associated with survival in patients with ovarian cancer. Aging (Albany NY). 2021;13:12660–90. PubMed DOI
Wang N, Cao QX, Tian J, Ren L, Cheng HL, Yang SQ. Circular RNA MTO1 inhibits the proliferation and invasion of ovarian cancer cells through the miR-182-5p/KLF15 Axis. Cell Transplant. 2020;29:963689720943613. PubMed DOI
Wang A, Jin C, Li H, Qin Q, Li L. LncRNA ADAMTS9-AS2 regulates ovarian cancer progression by targeting miR-182-5p/FOXF2 signaling pathway. Int J Biol Macromol. 2018;120:1705–13. PubMed DOI
Záveský L, Jandáková E, Weinberger V, Hanzíková V, Slanař O, Kohoutová M. Ascites in ovarian cancer: MicroRNA deregulations and their potential roles in ovarian carcinogenesis. Cancer Biomark. 2022;33:1–16. PubMed DOI
Ramalho S, Andrade LAA, Filho CC, Natal RA, Pavanello M, Ferracini AC, et al. Role of discoidin domain receptor 2 (DDR2) and microRNA-182 in survival of women with high-grade serous ovarian cancer. Tumour Biol. 2019;41:1010428318823988. PubMed DOI
Duan L, Yan Y, Wang G, Xing YL, Sun J, Wang LL. ΜiR-182-5p functions as a tumor suppressor to sensitize human ovarian cancer cells to cisplatin through direct targeting the cyclin dependent kinase 6 (CDK6). J Buon. 2020;25:2279–86. PubMed
Li N, Yang L, Wang H, Yi T, Jia X, Chen C, et al. MiR-130a and MiR-374a function as novel regulators of cisplatin resistance in human ovarian cancer A2780 cells. PLoS ONE. 2015;10: e0128886. PubMed DOI PMC
Lu W, Lu T, Wei X. Downregulation of DNMT3a expression increases miR-182-induced apoptosis of ovarian cancer through caspase-3 and caspase-9-mediated apoptosis and DNA damage response. Oncol Rep. 2016;36:3597–604. PubMed DOI
Meng X, Joosse SA, Müller V, Trillsch F, Milde-Langosch K, Mahner S, et al. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429 in ovarian cancer patients. Br J Cancer. 2015;113:1358–66. PubMed DOI PMC
Elias K, Smyczynska U, Stawiski K, Nowicka Z, Webber J, Kaplan J, et al. Identification of BRCA1/2 mutation female carriers using circulating microRNA profiles. Nat Commun. 2023;14:3350. PubMed DOI PMC
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical cancer, papillomavirus, and miRNA dysfunction. Front Mol Biosci. 2021;8: 758337. PubMed DOI PMC
Tang T, Wong HK, Gu W, Yu MY, To KF, Wang CC, et al. MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol. 2013;129:199–208. PubMed DOI
Li P, Hu J, Zhang Y, Li J, Dang Y, Zhang R, et al. miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018;34:148–53. PubMed
Gao F, Yin J, Wang Y, Li H, Wang D. miR-182 promotes cervical cancer progression via activating the Wnt/β-catenin axis. Am J Cancer Res. 2023;13:3591–8. PubMed PMC
Chen J, Deng Y, Ao L, Song Y, Xu Y, Wang CC, et al. The high-risk HPV oncogene E7 upregulates miR-182 expression through the TGF-β/Smad pathway in cervical cancer. Cancer Lett. 2019;460:75–85. PubMed DOI
Javadi H, Lotfi AS, Hosseinkhani S, Mehrani H, Amani J, Soheili ZS, et al. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells. Artif Cells Nanomed Biotechnol. 2018;46:727–36. PubMed DOI
Zhang J, Zhou M, Zhao X, Wang G, Li J. Long noncoding RNA LINC00173 is downregulated in cervical cancer and inhibits cell proliferation and invasion by modulating the miR-182-5p/FBXW7 axis. Pathol Res Pract. 2020;216: 152994. PubMed DOI
Salmerón-Bárcenas EG, Mendoza-Catalan MA, Ramírez-Bautista ÁU, Lozano-Santos RA, Torres-Rojas FI, Ávila-López PA, et al. Identification of Mir-182–3p/FLI-1 axis as a key signaling in immune response in cervical cancer: a comprehensive bioinformatic analysis. Int J Mol Sci. 2023;24:6032. PubMed DOI PMC
Sun J, Ji J, Huo G, Song Q, Zhang X. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol. 2015;8:4755–63. PubMed PMC
Zhang Q, Zheng J, Liu L. The long noncoding RNA PCGEM1 promotes cell proliferation, migration and invasion via targeting the miR-182/FBXW11 axis in cervical cancer. Cancer Cell Int. 2019;19:304. PubMed DOI PMC
Okoye JO, Ngokere AA, Onyenekwe CC, Erinle CA. Comparable expression of miR-let-7b, miR-21, miR-182, miR-145, and p53 in serum and cervical cells: Diagnostic implications for early detection of cervical lesions. Int J Health Sci. 2019;13:29–38.
Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, et al. MicroRNA as epigenetic modifiers in endometrial cancer: a systematic review. Cancers (Basel). 2021;13:1137. PubMed DOI
Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70:367–77. PubMed DOI
Guo Y, Liao Y, Jia C, Ren J, Wang J, Li T. MicroRNA-182 promotes tumor cell growth by targeting transcription elongation factor A-like 7 in endometrial carcinoma. Cell Physiol Biochem. 2013;32:581–90. PubMed DOI
Devor EJ, Schickling BM, Reyes HD, Warrier A, Lindsay B, Goodheart MJ, et al. Cullin-5, a ubiquitin ligase scaffold protein, is significantly underexpressed in endometrial adenocarcinomas and is a target of miR-182. Oncol Rep. 2016;35:2461–5. PubMed DOI PMC
Yao H, Kong F, Zhou Y. MiR-182 promotes cell proliferation, migration and invasion by targeting FoxF2 in endometrial carcinoma cells. Int J Clin Exp Pathol. 2019;12:1248–59. PubMed PMC
Xiao Y, Huang W, Huang H, Wang L, Wang M, Zhang T, et al. miR-182-5p and miR-96-5p target PIAS1 and mediate the negative feedback regulatory loop between PIAS1 and STAT3 in endometrial cancer. DNA Cell Biol. 2021;40:618–28. PubMed DOI
Nishijima Y, Inoue N, Iwase A, Yokoo H, Saio M. MicroRNA 182, 183, 200a, and 200b exhibit strong correlations but no involvement in PTEN protein regulation in uterine endometrial carcinoma. Pathol Res Pract. 2022;236: 153986. PubMed DOI
Wu M, Zhang Y. MiR-182 inhibits proliferation, migration, invasion and inflammation of endometrial stromal cells through deactivation of NF-κB signaling pathway in endometriosis. Mol Cell Biochem. 2021;476:1575–88. PubMed DOI
Fang Q, Sang L, Du S. Long noncoding RNA LINC00261 regulates endometrial carcinoma progression by modulating miRNA/FOXO1 expression. Cell Biochem Funct. 2018;36:323–30. PubMed DOI
Jia Y, Liu M, Wang S. CircRNA hsa_circRNA_0001776 inhibits proliferation and promotes apoptosis in endometrial cancer via downregulating LRIG2 by sponging miR-182. Cancer Cell Int. 2020;20:412. PubMed DOI PMC
Delangle R, De Foucher T, Larsen AK, Sabbah M, Azaïs H, Bendifallah S, et al. The use of microRNAs in the management of endometrial cancer: a meta-analysis. Cancers (Basel). 2019;11:832. PubMed DOI
Lee H, Choi HJ, Kang CS, Lee HJ, Lee WS, Park CS. Expression of miRNAs and PTEN in endometrial specimens ranging from histologically normal to hyperplasia and endometrial adenocarcinoma. Mod Pathol. 2012;25:1508–15. PubMed DOI
Donkers H, Bekkers R, Galaal K. Diagnostic value of microRNA panel in endometrial cancer: a systematic review. Oncotarget. 2020;11:2010–23. PubMed DOI PMC
Li C, Dou P, Wang T, Lu X, Xu G, Lin X. Defining disease-related modules based on weighted miRNA synergistic network. Comput Biol Med. 2023;152: 106382. PubMed DOI
Chang L, Xia J. MicroRNA regulatory network analysis using miRNet 2.0. In: Song Q, Tao Z, editors. Transcription factor regulatory networks. US, New York: Springer; 2023. p. 185–204. DOI
Lauffer MC, van Roon-Mom W, Aartsma-Rus A, Collaborative N. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun Med. 2024;4:6. PubMed DOI PMC
Brillante S, Volpe M, Indrieri A. Advances in MicroRNA therapeutics: from preclinical to clinical studies. Hum Gene Ther. 2024;35:628–48. PubMed DOI
Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nat Rev Genet. 2024;25:1–16. DOI
Kansal R. The CRISPR-Cas system and clinical applications of CRISPR-based gene editing in hematology with a focus on inherited germline predisposition to hematologic malignancies. Genes. 2024;15:863. PubMed DOI PMC
Mahjoubin-Tehran M, Rezaei S, Karav S, Kesharwani P, Sahebkar A. Decoy oligodeoxynucleotides: a promising therapeutic strategy for inflammatory skin disorders. Hum Immunol. 2024;85: 111161. PubMed DOI
Wang N, Cao Q-X, Tian J, Ren L, Cheng H-L, Yang S-Q. Circular RNA MTO1 inhibits the proliferation and invasion of ovarian cancer cells through the miR-182-5p/KLF15 axis. Cell Transplant. 2020;29:0963689720943613. PubMed DOI PMC
Yu J, Wang H, Shen W, Zhou Y, Cui J, Li H, et al. Hsa_circ_0007823 overexpression suppresses the progression of triple-negative breast cancer via regulating miR-182–5p-FOXO1 Axis. Breast Cancer Targets Ther. 2023;15:695–708. DOI
Barsoum FS, Awad AS, Hussein NH, Eissa RA, El Tayebi HM. MALAT-1: LncRNA ruling miR-182/PIG-C/mesothelin triad in triple negative breast cancer. Pathol-Res Practice. 2020;216: 153274. DOI
Zhang J, Zhou M, Zhao X, Wang G, Li J. Long noncoding RNA LINC00173 is downregulated in cervical cancer and inhibits cell proliferation and invasion by modulating the miR-182-5p/FBXW7 axis. Pathol-Res Practice. 2020;216: 152994. DOI
Zhang Q, Zheng J, Liu L. The long noncoding RNA PCGEM1 promotes cell proliferation, migration and invasion via targeting the miR-182/FBXW11 axis in cervical cancer. Cancer Cell Int. 2019;19:1–15. DOI
Jia Y, Liu M, Wang S. CircRNA hsa_circRNA_0001776 inhibits proliferation and promotes apoptosis in endometrial cancer via downregulating LRIG2 by sponging miR-182. Cancer Cell Int. 2020;20:1–13. DOI
Ramalho S, Andrade LADA, Filho CC, Natal RDA, Pavanello M, Ferracini AC, et al. Role of discoidin domain receptor 2 (DDR2) and microRNA-182 in survival of women with high-grade serous ovarian cancer. Tumor Biol. 2019. https://doi.org/10.1177/1010428318823988 . DOI
Duan L, Yan Y, Wang G, Xing YL, Sun J, Wang LL. MuiR-182-5p functions as a tumor suppressor to sensitize human ovarian cancer cells to cisplatin through direct targeting the cyclin dependent kinase 6 (CDK6). J Buon. 2020;25:2279–86. PubMed