Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
37947637
PubMed Central
PMC10649218
DOI
10.3390/cells12212559
PII: cells12212559
Knihovny.cz E-resources
- Keywords
- lncRNA, mesenchymal stem cells, miRNA,
- MeSH
- Cell Differentiation genetics MeSH
- Humans MeSH
- Mesenchymal Stem Cells * metabolism MeSH
- MicroRNAs * genetics metabolism MeSH
- Osteoblasts metabolism MeSH
- RNA, Long Noncoding * genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- MicroRNAs * MeSH
- RNA, Long Noncoding * MeSH
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Immunology School of Medicine Isfahan University of Medical Sciences Isfahan Iran
Department of Physiotherapy Wroclaw University School of Physical Education 50 038 Wroclaw Poland
Department of Toxicology Poznan University of Medical Sciences 60 631 Poznan Poland
Division of Anatomy and Histology University of Zielona Góra 65 046 Zielona Góra Poland
Faculty of Medicine Dezful University of Medical Sciences Dezful Iran
Future Science Group Unitec House 2 Albert Place London N3 1QB UK
Infectious and Tropical Diseases Research Center Tabriz University of Medical Sciences Tabriz Iran
Physiology Graduate Faculty North Carolina State University Raleigh NC 27613 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27607 USA
See more in PubMed
Wong S.P., Rowley J.E., Redpath A.N., Tilman J.D., Fellous T.G., Johnson J.R. Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol. Ther. 2015;151:107–120. doi: 10.1016/j.pharmthera.2015.03.006. PubMed DOI
Han Y., Li X., Zhang Y., Han Y., Chang F., Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019;8:886. doi: 10.3390/cells8080886. PubMed DOI PMC
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. MiR-15 and MiR-16 Induce Apoptosis by Targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102. PubMed DOI PMC
Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. doi: 10.1038/nature02871. PubMed DOI
Goodfellow S.J., White R.J. Regulation of RNA Polymerase III Transcription During Mammalian Cell Growth. Cell Cycle. 2007;6:2323–2326. doi: 10.4161/cc.6.19.4767. PubMed DOI
Rupaimoole R., Calin G.A., Lopez-Berestein G., Sood A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016;6:235–246. doi: 10.1158/2159-8290.CD-15-0893. PubMed DOI PMC
Iorio M.V., Croce C.M. MicroRNA Dysregulation in Cancer: Diagnostics, Monitoring and Therapeutics. A Comprehensive Review. EMBO Mol. Med. 2012;4:143–159. doi: 10.1002/emmm.201100209. PubMed DOI PMC
Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011;12:861–874. doi: 10.1038/nrg3074. PubMed DOI
Zhou K., Liu M., Cao Y. New Insight into microRNA Functions in Cancer: Oncogene–microRNA–Tumor Suppressor Gene Network. Front. Mol. Biosci. 2017;4:46. doi: 10.3389/fmolb.2017.00046. PubMed DOI PMC
O’Bryan S., Dong S., Mathis J.M., Alahari S.K. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur. J. Cancer. 2017;72:1–11. doi: 10.1016/j.ejca.2016.11.004. PubMed DOI
Zhang B., Pan X., Cobb G., Anderson T. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007;302:1–12. doi: 10.1016/j.ydbio.2006.08.028. PubMed DOI
Otmani K., Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front. Oncol. 2021;11 doi: 10.3389/fonc.2021.708765. PubMed DOI PMC
Rupaimoole R., Slack F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI
Valihrach L., Androvic P., Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol. Asp. Med. 2019;72:100825. doi: 10.1016/j.mam.2019.10.002. PubMed DOI
Kim T., Croce C.M. MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 2023;55:1314–1321. doi: 10.1038/s12276-023-01050-9. PubMed DOI PMC
Hodges W.M., O’brien F., Fulzele S., Hamrick M.W. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs) Int. J. Mol. Sci. 2017;18:2597. doi: 10.3390/ijms18122597. PubMed DOI PMC
Iaquinta M.R., Lanzillotti C., Mazziotta C., Bononi I., Frontini F., Mazzoni E., Oton-Gonzalez L., Rotondo J.C., Torreggiani E., Tognon M., et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics. 2021;11:6573–6591. doi: 10.7150/thno.55664. PubMed DOI PMC
Martin E., Qureshi A., Dasa V., Freitas M., Gimble J., Davis T. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome. Biochimie. 2016;124:98–111. doi: 10.1016/j.biochi.2015.02.012. PubMed DOI
Harrell C.R., Jovicic N., Djonov V., Arsenijevic N., Volarevic V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells. 2019;8:1605. doi: 10.3390/cells8121605. PubMed DOI PMC
Pers Y.-M., Maumus M., Bony C., Jorgensen C., Noël D. Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells. Biochimie. 2018;155:109–118. doi: 10.1016/j.biochi.2018.07.001. PubMed DOI
Vicente R., Noël D., Pers Y.M., Apparailly F., Jorgensen C. Deregulation and Therapeutic Potential of MicroRNAs in Arthritic Diseases. Nat. Rev. Rheumatol. 2016;12:211–220. doi: 10.1038/nrrheum.2015.162. PubMed DOI
Liu H., Chen Y., Yin G., Xie Q. Therapeutic prospects of MicroRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci. 2021;277:119458. doi: 10.1016/j.lfs.2021.119458. PubMed DOI
Sun P., Liu D.Z., Jickling G.C., Sharp F.R., Yin K.J. MicroRNA-Based Therapeutics in Central Nervous System Injuries. J. Cereb. Blood Flow. Metab. 2018;38:1125–1148. doi: 10.1177/0271678X18773871. PubMed DOI PMC
Giordano L., Della Porta G., Peretti G.M., Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br. Med Bull. 2020;133:79–94. doi: 10.1093/bmb/ldaa002. PubMed DOI
Iyer M.K., Niknafs Y.S., Malik R., Singhal U., Sahu A., Hosono Y., Barrette T.R., Prensner J.R., Evans J.R., Zhao S., et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 2015;47:199–208. doi: 10.1038/ng.3192. PubMed DOI PMC
Hangauer M.J., Vaughn I.W., McManus M.T. Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs. PLoS Genet. 2013;9:e1003569. doi: 10.1371/journal.pgen.1003569. PubMed DOI PMC
Zealy R.W., Fomin M., Davila S., Makowsky D., Thigpen H., McDowell C.H., Cummings J.C., Lee E.S., Kwon S.-H., Min K.-W., et al. Long noncoding RNA complementarity and target transcripts abundance. Biochim. et Biophys. Acta BBA Gene Regul. Mech. 2018;1861:224–234. doi: 10.1016/j.bbagrm.2018.02.001. PubMed DOI PMC
Arora R., Lee Y., Wischnewski H., Brun C.M., Schwarz T., Azzalin C.M. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 2014;5:5220. doi: 10.1038/ncomms6220. PubMed DOI PMC
Aznaourova M., Janga H., Sefried S., Kaufmann A., Dorna J., Volkers S.M., Georg P., Lechner M., Hoppe J., Dökel S., et al. Noncoding RNA MaIL1 is an integral component of the TLR4–TRIF pathway. Proc. Natl. Acad. Sci. USA. 2020;117:9042–9053. doi: 10.1073/pnas.1920393117. PubMed DOI PMC
Tsai M.-C., Manor O., Wan Y., Mosammaparast N., Wang J.K., Lan F., Shi Y., Segal E., Chang H.Y. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science. 2010;329:689–693. doi: 10.1126/science.1192002. PubMed DOI PMC
Postepska-Igielska A., Giwojna A., Gasri-Plotnitsky L., Schmitt N., Dold A., Ginsberg D., Grummt I. LncRNA Khps1 Regulates Expression of the Proto-oncogene SPHK1 via Triplex-Mediated Changes in Chromatin Structure. Mol. Cell. 2015;60:626–636. doi: 10.1016/j.molcel.2015.10.001. PubMed DOI
Du L., Jiang X., Duan W., Wang R., Wang L., Zheng G., Yan K., Wang L., Li J., Zhang X., et al. Cell-free microRNA expression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Oncotarget. 2017;8:40832–40842. doi: 10.18632/oncotarget.16586. PubMed DOI PMC
Li Q., Shao Y., Zhang X., Zheng T., Miao M., Qin L., Wang B., Ye G., Xiao B., Guo J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol. 2014;36:2007–2012. doi: 10.1007/s13277-014-2807-y. PubMed DOI
Dong L., Lin W., Qi P., Xu M.-D., Wu X., Ni S., Huang D., Weng W.-W., Tan C., Sheng W., et al. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 2016;25:1158–1166. doi: 10.1158/1055-9965.EPI-16-0006. PubMed DOI
Jiang M.-C., Ni J.-J., Cui W.-Y., Wang B.-Y., Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019;9:1354–1366. PubMed PMC
Engreitz J.M., Haines J.E., Perez E.M., Munson G., Chen J., Kane M., McDonel P.E., Guttman M., Lander E.S. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–455. doi: 10.1038/nature20149. PubMed DOI PMC
Sebastian-Delacruz M., Gonzalez-Moro I., Olazagoitia-Garmendia A., Castellanos-Rubio A., Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Non Coding RNA. 2021;7:3. doi: 10.3390/ncrna7010003. PubMed DOI PMC
Barter M.J., Gomez R., Hyatt S., Cheung K., Skelton A.J., Xu Y., Clark I.M., Young D.A. The Long Non-Coding RNA ROCR Contributes to Sox9 Expression and Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Development. 2017;144:4510–4521. doi: 10.1242/DEV.152504/264482/AM/LONG-NONCODING-RNA-ROCR-CONTRIBUTES-TO-SOX9. PubMed DOI PMC
Ju C., Liu R., Zhang Y.-W., Zhang Y., Zhou R., Sun J., Lv X.-B., Zhang Z. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed. Pharmacother. 2019;115:108912. doi: 10.1016/j.biopha.2019.108912. PubMed DOI
Wei B., Wei W., Zhao B., Guo X., Liu S. Long Non-Coding RNA HOTAIR Inhibits MIR-17-5p to Regulate Osteogenic Differentiation and Proliferation in Nontraumatic Osteonecrosis of Femoral Head. PLoS ONE. 2017;12:e0169097. doi: 10.1371/journal.pone.0169097. PubMed DOI PMC
Li X., Song Y., Liu F., Liu D., Miao H., Ren J., Xu J., Ding L., Hu Y., Wang Z., et al. Long Non-Coding RNA MALAT1 Promotes Proliferation, Angiogenesis, and Immunosuppressive Properties of Mesenchymal Stem Cells by Inducing VEGF and IDO. J. Cell. Biochem. 2017;118:2780–2791. doi: 10.1002/jcb.25927. PubMed DOI
Tong X., Gu P.-C., Xu S.-Z., Lin X.-J. Long non-coding RNA-DANCR in human circulating monocytes: A potential biomarker associated with postmenopausal osteoporosis. Biosci. Biotechnol. Biochem. 2015;79:732–737. doi: 10.1080/09168451.2014.998617. PubMed DOI
Seo J.-S., Kwak M., Hong S., Yu S.-L., Sim B.-W., Kang J. Parthenogenetic embryonic stem cells with H19 siRNA-mediated knockdown as a potential resource for cell therapy. Int. J. Mol. Med. 2011;29:257–262. doi: 10.3892/ijmm.2011.838. PubMed DOI
Gloss B.S., Dinger M.E. The specificity of long noncoding RNA expression. Biochim. et Biophys. Acta BBA Gene Regul. Mech. 2016;1859:16–22. doi: 10.1016/j.bbagrm.2015.08.005. PubMed DOI
Patel A.N., Vargas V., Revello P., Bull D.A. Mesenchymal Stem Cell Population Isolated from the Subepithelial Layer of Umbilical Cord Tissue. Cell Transplant. 2013;22:513–519. doi: 10.3727/096368912X655064. PubMed DOI
Halvorsen Y., Wilkison W., Gimble J. Adipose-derived stromal cells—Their utility and potential in bone formation. Int. J. Obes. 2000;24:S41–S44. doi: 10.1038/sj.ijo.0801503. PubMed DOI
Surrati A., Evseev S., Jourdan F., Kim D.-H., Sottile V. Osteogenic Response of Human Mesenchymal Stem Cells Analysed Using Combined Intracellular and Extracellular Metabolomic Monitoring. Cell. Physiol. Biochem. 2021;55:311–326. doi: 10.33594/000000377. PubMed DOI
De Souza Fernandez T., de Souza Fernandez C. Pluripotent Stem Cells—From the Bench to the Clinic. IntechOpen; London, UK: 2016. Mesenchymal Stem Cells: Biological Characteristics and Potential Clinical Applications for Haematopoietic Stem Cell Transplantation.
Mihaylova Z. Stem cells and mesenchymal stem cell markers. Int. J. Med. Sci. Clin. Invent. 2019;6:4544–4547. doi: 10.18535/ijmsci/v6i8.03. DOI
Guo X., Bai Y., Zhang L., Zhang B., Zagidullin N., Carvalho K., Du Z., Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: New regulators and its implications. Stem Cell Res. Ther. 2018;9:44. doi: 10.1186/s13287-018-0773-9. PubMed DOI PMC
Ciuffreda M.C., Malpasso G., Musarò P., Turco V., Gnecchi M. Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages. Methods Mol. Biol. 2016;1416:149–158. doi: 10.1007/978-1-4939-3584-0_8. PubMed DOI
Gimble J.M., Guilak F., Nuttall M.E., Sathishkumar S., Vidal M., Bunnell B.A. In vitro Differentiation Potential of Mesenchymal Stem Cells. Transfus. Med. Hemother. 2008;35:228–238. doi: 10.1159/000124281. PubMed DOI PMC
Tsao Y.-T., Huang Y.-J., Wu H.-H., Liu Y.-A., Liu Y.-S., Lee O.K. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2017;18:159. doi: 10.3390/ijms18010159. PubMed DOI PMC
Kärner E., Bäckesjö C.-M., Cedervall J., Sugars R.V., Ährlund-Richter L., Wendel M. Dynamics of gene expression during bone matrix formation in osteogenic cultures derived from human embryonic stem cells in vitro. Biochim. et Biophys. Acta BBA Gen. Subj. 2009;1790:110–118. doi: 10.1016/j.bbagen.2008.10.004. PubMed DOI
Griffin M., Hindocha S., Khan W.S. Chondrogenic Differentiation of Adult MSCs. Curr. Stem Cell Res. Ther. 2012;7:260–265. doi: 10.2174/157488812800793036. PubMed DOI
Yang X., Tian S., Fan L., Niu R., Yan M., Chen S., Zheng M., Zhang S. Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell Int. 2022;22:169. doi: 10.1186/s12935-022-02598-8. PubMed DOI PMC
Sekiya I., Larson B.L., Vuoristo J.T., Cui J.-G., Prockop D.J. Adipogenic Differentiation of Human Adult Stem Cells from Bone Marrow Stroma (MSCs) J. Bone Miner. Res. 2003;19:256–264. doi: 10.1359/JBMR.0301220. PubMed DOI
Stosich M.S.M., Mao J.J.D. Adipose Tissue Engineering from Human Adult Stem Cells: Clinical Implications in Plastic and Reconstructive Surgery. Plast. Reconstr. Surg. 2007;119:71–83. doi: 10.1097/01.prs.0000244840.80661.e7. PubMed DOI PMC
Beahm E.K., Walton R.L., Patrick C.W. Progress in adipose tissue construct development. Clin. Plast. Surg. 2003;30:547–558. doi: 10.1016/S0094-1298(03)00072-5. PubMed DOI
Xu Y., Li Z., Li X., Fan Z., Liu Z., Xie X., Guan J. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomater. 2015;26:23–33. doi: 10.1016/j.actbio.2015.08.010. PubMed DOI
Beier J.P., Bitto F.F., Lange C., Klumpp D., Arkudas A., Bleiziffer O., Boos A.M., Horch R.E., Kneser U. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol. Int. 2011;35:397–406. doi: 10.1042/CBI20100417. PubMed DOI
Meligy F.Y., Shigemura K., Behnsawy H.M., Fujisawa M., Kawabata M., Shirakawa T. The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. Vitr. Cell. Dev. Biol. Anim. 2012;48:203–215. doi: 10.1007/s11626-012-9488-x. PubMed DOI
Tsai C.-C., Su P.-F., Huang Y.-F., Yew T.-L., Hung S.-C. Oct4 and Nanog Directly Regulate Dnmt1 to Maintain Self-Renewal and Undifferentiated State in Mesenchymal Stem Cells. Mol. Cell. 2012;47:169–182. doi: 10.1016/j.molcel.2012.06.020. PubMed DOI
Kolf C.M., Cho E., Tuan R.S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 2007;9:204. doi: 10.1186/ar2116. PubMed DOI PMC
Schwartz J., Van De Pavert S., Clarke I., Rao A., Ray D., Vrana K. Paracrine Interactions within the Pituitary Gland. Ann. N. Y. Acad. Sci. 1998;839:239–243. doi: 10.1111/j.1749-6632.1998.tb10767.x. PubMed DOI
Kléber M., Sommer L. Wnt signaling and the regulation of stem cell function. Curr. Opin. Cell Biol. 2004;16:681–687. doi: 10.1016/j.ceb.2004.08.006. PubMed DOI
Tsutsumi S., Shimazu A., Miyazaki K., Pan H., Koike C., Yoshida E., Takagishi K., Kato Y. Retention of Multilineage Differentiation Potential of Mesenchymal Cells during Proliferation in Response to FGF. Biochem. Biophys. Res. Commun. 2001;288:413–419. doi: 10.1006/bbrc.2001.5777. PubMed DOI
Jiang Y., Vaessen B., Lenvik T., Blackstad M., Reyes M., Verfaillie C.M. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 2002;30:896–904. doi: 10.1016/S0301-472X(02)00869-X. PubMed DOI
Zaragosi L., Ailhaud G., Dani C. Autocrine Fibroblast Growth Factor 2 Signaling Is Critical for Self-Renewal of Human Multipotent Adipose-Derived Stem Cells. Stem Cells. 2006;24:2412–2419. doi: 10.1634/stemcells.2006-0006. PubMed DOI
Gattazzo F., Urciuolo A., Bonaldo P. Extracellular Matrix: A Dynamic Microenvironment for Stem Cell Niche. Biochim. Biophys. Acta BBA Gen. Subj. 2014;1840:2506–2519. doi: 10.1016/j.bbagen.2014.01.010. PubMed DOI PMC
Saleh N.T., Sohi A.N., Esmaeili E., Karami S., Soleimanifar F., Nasoohi N. Immobilized Laminin-derived Peptide Can Enhance Expression of Stemness Markers in Mesenchymal Stem Cells. Biotechnol. Bioprocess Eng. 2019;24:876–884. doi: 10.1007/s12257-019-0118-2. DOI
Ye Y., Zhao X., Xu Y., Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. Front. Dent. Med. 2021;2 doi: 10.3389/fdmed.2021.799716. DOI
Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. doi: 10.1182/blood.V99.10.3838. PubMed DOI
Zhou Y., Yamamoto Y., Xiao Z., Ochiya T. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J. Clin. Med. 2019;8:1025. doi: 10.3390/jcm8071025. PubMed DOI PMC
Li N., Hua J. Interactions between mesenchymal stem cells and the immune system. Cell. Mol. Life Sci. 2017;74:2345–2360. doi: 10.1007/s00018-017-2473-5. PubMed DOI PMC
Ghannam S., Pène J., Torcy-Moquet G., Jorgensen C., Yssel H. Mesenchymal Stem Cells Inhibit Human Th17 Cell Differentiation and Function and Induce a T Regulatory Cell Phenotype. J. Immunol. 2010;185:302–312. doi: 10.4049/jimmunol.0902007. PubMed DOI
Yang Y., Cai Y., Zhang Y., Liu J., Xu Z. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen–Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis. J. Mol. Neurosci. 2018;65:74–83. doi: 10.1007/s12031-018-1071-9. PubMed DOI
Han Y., Ren J., Bai Y., Pei X., Han Y. Exosomes from Hypoxia-Treated Human Adipose-Derived Mesenchymal Stem Cells Enhance Angiogenesis through VEGF/VEGF-R. Int. J. Biochem. Cell Biol. 2019;109:59–68. doi: 10.1016/j.biocel.2019.01.017. PubMed DOI
Uccelli A., Benvenuto F., Laroni A., Giunti D. Neuroprotective features of mesenchymal stem cells. Best Pr. Res. Clin. Haematol. 2011;24:59–64. doi: 10.1016/j.beha.2011.01.004. PubMed DOI
Ohtaki H., Ylostalo J.H., Foraker J.E., Robinson A.P., Reger R.L., Shioda S., Prockop D.J. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc. Natl. Acad. Sci. USA. 2008;105:14638–14643. doi: 10.1073/pnas.0803670105. PubMed DOI PMC
Hwang N.S., Zhang C., Hwang Y., Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009;1:97–106. doi: 10.1002/wsbm.26. PubMed DOI
Fu X., Liu G., Halim A., Ju Y., Luo Q., Song G. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019;8:784. doi: 10.3390/cells8080784. PubMed DOI PMC
Potapova I.A., Gaudette G.R., Brink P.R., Robinson R.B., Rosen M.R., Cohen I.S., Doronin S.V. Mesenchymal Stem Cells Support Migration, Extracellular Matrix Invasion, Proliferation, and Survival of Endothelial Cells In Vitro. Stem Cells. 2007;25:1761–1768. doi: 10.1634/stemcells.2007-0022. PubMed DOI
Wang M., Yuan Q., Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624. PubMed DOI PMC
Jasim S.A., Yumashev A.V., Abdelbasset W.K., Margiana R., Markov A., Suksatan W., Pineda B., Thangavelu L., Ahmadi S.H. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res. Ther. 2022;13:101. doi: 10.1186/s13287-022-02782-7. PubMed DOI PMC
Margiana R., Markov A., Zekiy A.O., Hamza M.U., Al-Dabbagh K.A., Al-Zubaidi S.H., Hameed N.M., Ahmad I., Sivaraman R., Kzar H.H., et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022;13:366. doi: 10.1186/s13287-022-03054-0. PubMed DOI PMC
Berebichez-Fridman R., Montero-Olvera P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018;18:e264–e277. doi: 10.18295/squmj.2018.18.03.002. PubMed DOI PMC
Caplan H., Olson S.D., Kumar A., George M., Prabhakara K.S., Wenzel P., Bedi S., Toledano-Furman N.E., Triolo F., Kamhieh-Milz J., et al. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front. Immunol. 2019;10:1645. doi: 10.3389/fimmu.2019.01645. PubMed DOI PMC
Spees J.L., Lee R.H., Gregory C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016;7:125. doi: 10.1186/s13287-016-0363-7. PubMed DOI PMC
Lv F.-J., Tuan R.S., Cheung K.M.C., Leung V.Y.L. Concise Review: The Surface Markers and Identity of Human Mesenchymal Stem Cells. Stem Cells. 2014;32:1408–1419. doi: 10.1002/stem.1681. PubMed DOI
Phinney D.G., Sensebé L. Mesenchymal stromal cells: Misconceptions and evolving concepts. Cytotherapy. 2013;15:140–145. doi: 10.1016/j.jcyt.2012.11.005. PubMed DOI
Boeuf S., Richter W. Chondrogenesis of mesenchymal stem cells: Role of tissue source and inducing factors. Stem Cell Res. Ther. 2010;1:31. doi: 10.1186/scrt31. PubMed DOI PMC
Scott M.A., Nguyen V.T., Levi B., James A.W., Bakillah A., Hussain M.M., Song Y.-S., Lee D.H., Yu J.-H., Oh D.-K., et al. Current Methods of Adipogenic Differentiation of Mesenchymal Stem Cells. Stem Cells Dev. 2011;20:1793–1804. doi: 10.1089/scd.2011.0040. PubMed DOI PMC
Westhrin M., Xie M., Olderøy M., Sikorski P., Strand B.L., Standal T. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices. PLoS ONE. 2015;10:e0120374. doi: 10.1371/journal.pone.0120374. PubMed DOI PMC
Chen B., Chen X., Liu C., Li J., Liu F., Huang Y. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed. Pharmacother. 2018;108:508–514. doi: 10.1016/j.biopha.2018.09.047. PubMed DOI
Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. PubMed DOI
Jaiswal N., Haynesworth S.E., Caplan A.I., Bruder S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 1997;64:295–312. doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I. PubMed DOI
Wakitani S., Saito T., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18:1417–1426. doi: 10.1002/mus.880181212. PubMed DOI
Song L., Tuan R.S. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18:980–982. doi: 10.1096/fj.03-1100fje. PubMed DOI
Andrzejewska A., Lukomska B., Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells. 2019;37:855–864. doi: 10.1002/stem.3016. PubMed DOI PMC
Der Lee K., Kuo T.K.C., Whang-Peng J., Chung Y.F., Lin C.T., Chou S.H., Chen J.R., Chen Y.P., Lee O.K.S. In Vitro Hepatic Differentiation of Human Mesenchymal Stem Cells. Hepatology. 2004;40:1275–1284. doi: 10.1002/hep.20469. PubMed DOI
Phadnis S.M., Joglekar M.V., Dalvi M.P., Muthyala S., Nair P.D., Ghaskadbi S.M., Bhonde R.R., Hardikar A.A. Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy. 2011;13:279–293. doi: 10.3109/14653249.2010.523108. PubMed DOI
Govindasamy V., Ronald V., Abdullah A., Nathan K.G., Aziz Z.A., Abdullah M., Musa S., Abu Kasim N., Bhonde R. Differentiation of Dental Pulp Stem Cells into Islet-like Aggregates. J. Dent. Res. 2011;90:646–652. doi: 10.1177/0022034510396879. PubMed DOI
Hofstetter C.P., Schwarz E.J., Hess D., Widenfalk J., El Manira A., Prockop D.J., Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA. 2002;99:2199–2204. doi: 10.1073/pnas.042678299. PubMed DOI PMC
Jiang W., Ma A., Wang T., Han K., Liu Y., Zhang Y., Zhao X., Dong A., Du Y., Huang X., et al. Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transpl. Int. 2006;19:570–580. doi: 10.1111/j.1432-2277.2006.00307.x. PubMed DOI
Yue W.-M., Liu W., Bi Y.-W., He X.-P., Sun W.-Y., Pang X.-Y., Gu X.-H., Wang X.-P. Mesenchymal Stem Cells Differentiate into an Endothelial Phenotype, Reduce Neointimal Formation, and Enhance Endothelial Function in a Rat Vein Grafting Model. Stem Cells Dev. 2008;17:785–794. doi: 10.1089/scd.2007.0243. PubMed DOI
Li Z., Hassan M.Q., Volinia S., van Wijnen A.J., Stein J.L., Croce C.M., Lian J.B., Stein G.S. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. USA. 2008;105:13906–13911. doi: 10.1073/pnas.0804438105. PubMed DOI PMC
Wang Q., Li Y., Zhang Y., Ma L., Lin L., Meng J., Jiang L., Wang L., Zhou P., Zhang Y. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed. Pharmacother. 2017;89:1178–1186. doi: 10.1016/j.biopha.2017.02.090. PubMed DOI
Yan J., Zhang C., Zhao Y., Cao C., Wu K., Zhao L., Zhang Y. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials. 2014;35:7734–7749. doi: 10.1016/j.biomaterials.2014.05.089. PubMed DOI
Hu J., Liao H., Ma Z., Chen H., Huang Z., Zhang Y., Yu M., Chen Y., Xu J. Focal Adhesion Kinase Signaling Mediated the Enhancement of Osteogenesis of Human Mesenchymal Stem Cells Induced by Extracorporeal Shockwave. Sci. Rep. 2016;6:20875. doi: 10.1038/srep20875. PubMed DOI PMC
Mizuno Y., Yagi K., Tokuzawa Y., Kanesaki-Yatsuka Y., Suda T., Katagiri T., Fukuda T., Maruyama M., Okuda A., Amemiya T., et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem. Biophys. Res. Commun. 2008;368:267–272. doi: 10.1016/j.bbrc.2008.01.073. PubMed DOI
Schoolmeesters A., Eklund T., Leake D., Vermeulen A., Smith Q., Aldred S.F., Fedorov Y. Functional Profiling Reveals Critical Role for miRNA in Differentiation of Human Mesenchymal Stem Cells. PLoS ONE. 2009;4:e5605. doi: 10.1371/journal.pone.0005605. PubMed DOI PMC
Gong Y., Lu J., Yu X., Yu Y. Expression of Sp7 in Satb2-induced osteogenic differentiation of mouse bone marrow stromal cells is regulated by microRNA-27a. Mol. Cell. Biochem. 2016;417:7–16. doi: 10.1007/s11010-016-2709-y. PubMed DOI
Huang J., Zhao L., Xing L., Di Chen D. MicroRNA-204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation. Stem Cells. 2009;28:357–364. doi: 10.1002/stem.288. PubMed DOI PMC
Inose H., Ochi H., Kimura A., Fujita K., Xu R., Sato S., Iwasaki M., Sunamura S., Takeuchi Y., Fukumoto S., et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc. Natl. Acad. Sci. USA. 2009;106:20794–20799. doi: 10.1073/pnas.0909311106. PubMed DOI PMC
Luzi E., Marini F., Sala S.C., Tognarini I., Galli G., Brandi M.L. Osteogenic Differentiation of Human Adipose Tissue-Derived Stem Cells Is Modulated by the miR-26a Targeting of the SMAD1 Transcription Factor. J. Bone Miner. Res. 2007;23:287–295. doi: 10.1359/jbmr.071011. PubMed DOI
Lv R., Pan X., Song L., Sun Q., Guo C., Zou S., Zhou Q. MicroRNA-200a-3p accelerates the progression of osteoporosis by targeting glutaminase to inhibit osteogenic differentiation of bone marrow mesenchymal stem cells. BioMedicine. 2019;116:108960. doi: 10.1016/j.biopha.2019.108960. PubMed DOI
Cui Q., Xing J., Yu M., Wang Y., Xu J., Gu Y., Nan X., Ma W., Liu H., Zhao H. Mmu-miR-185 depletion promotes osteogenic differentiation and suppresses bone loss in osteoporosis through the Bgn-mediated BMP/Smad pathway. Cell Death Dis. 2019;10:172. doi: 10.1038/s41419-019-1428-1. PubMed DOI PMC
Gu Z., Long J., Li Y., Wang X., Wang H. MiR-125a-3p Negatively Regulates Osteoblastic Differentiation of Human Adipose Derived Mesenchymal Stem Cells by Targeting Smad4 and Jak1. Am. J. Transl. Res. 2019;11:2603–2615. PubMed PMC
Sangani R., Periyasamy-Thandavan S., Kolhe R., Bhattacharyya M.H., Chutkan N., Hunter M., Isales C., Hamrick M., Hill W.D., Fulzele S. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Mol. Cell. Endocrinol. 2015;410:19–26. doi: 10.1016/j.mce.2015.01.007. PubMed DOI PMC
Li X., Wu J., Liu S., Zhang K., Miao X., Li J., Shi Z., Gao Y. miR-384-5p Targets Gli2 and Negatively Regulates Age-Related Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev. 2019;28:791–798. doi: 10.1089/scd.2019.0044. PubMed DOI
Zhang Y., Li S., Yuan S., Zhang H., Liu J. MicroRNA-23a inhibits osteogenesis of periodontal mesenchymal stem cells by targeting bone morphogenetic protein signaling. Arch. Oral Biol. 2019;102:93–100. doi: 10.1016/j.archoralbio.2019.04.001. PubMed DOI
Zhuang X.-M., Zhou B., Yuan K.-F. Role of p53 mediated miR-23a/CXCL12 pathway in osteogenic differentiation of bone mesenchymal stem cells on nanostructured titanium surfaces. BioMedicine. 2019;112:108649. doi: 10.1016/j.biopha.2019.108649. PubMed DOI
Li T., Li H., Wang Y., Li T., Fan J., Xiao K., Zhao R.C., Weng X. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int. J. Biochem. Cell Biol. 2016;72:55–62. doi: 10.1016/j.biocel.2016.01.004. PubMed DOI
Ren G., Sun J., Li M., Zhang Y., Li R., Li Y. MicroRNA-23a-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting mitogen-activated protein kinase-13. Mol. Med. Rep. 2018;17:4554–4560. doi: 10.3892/mmr.2018.8452. PubMed DOI
Seenprachawong K., Nuchnoi P., Nantasenamat C., Prachayasittikul V., Supokawej A. Computational Identification of MiRNAs That Modulate the Differentiation of Mesenchymal Stem Cells to Osteoblasts. PeerJ. 2016;2016:e1976. doi: 10.7717/peerj.1976. PubMed DOI PMC
Feng L., Zhang J.-F., Shi L., Yang Z.-M., Wu T.-Y., Wang H.-X., Lin W.-P., Lu Y.-F., Lo J.H.T., Zhu D.-H., et al. MicroRNA-378 Suppressed Osteogenesis of MSCs and Impaired Bone Formation via Inactivating Wnt/β-Catenin Signaling. Mol. Ther. Nucleic Acids. 2020;21:1017–1028. doi: 10.1016/j.omtn.2020.07.018. PubMed DOI PMC
Xiao J., Qin S., Li W., Yao L., Huang P., Liao J., Liu J., Li S. Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci. 2020;253:117660. doi: 10.1016/j.lfs.2020.117660. PubMed DOI
Ma W., Dou Q., Ha X. Let-7a-5p inhibits BMSCs osteogenesis in postmenopausal osteoporosis mice. Biochem. Biophys. Res. Commun. 2019;510:53–58. doi: 10.1016/j.bbrc.2019.01.003. PubMed DOI
Zhang H.-G., Wang X.-B., Zhao H., Zhou C.-N. MicroRNA-9-5p promotes osteoporosis development through inhibiting osteogenesis and promoting adipogenesis via targeting Wnt3a. Eur. Rev. Med. Pharmacol. Sci. 2019;23:456–463. doi: 10.26355/eurrev_201901_16855. PubMed DOI
Luo H., Gao H., Liu F., Qiu B. Regulation of Runx2 by microRNA-9 and microRNA-10 modulates the osteogenic differentiation of mesenchymal stem cells. Int. J. Mol. Med. 2017;39:1046–1052. doi: 10.3892/ijmm.2017.2918. PubMed DOI
Duan L., Zhao H., Xiong Y., Tang X., Yang Y., Hu Z., Li C., Chen S., Yu X. miR-16-2* Interferes with WNT5A to Regulate Osteogenesis of Mesenchymal Stem Cells. Cell. Physiol. Biochem. 2018;51:1087–1102. doi: 10.1159/000495489. PubMed DOI
Li H., Li T., Wang S., Wei J., Fan J., Li J., Han Q., Liao L., Shao C., Zhao R.C. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 2013;10:313–324. doi: 10.1016/j.scr.2012.11.007. PubMed DOI
Zhao W., Wu C., Dong Y., Ma Y., Jin Y., Ji Y. MicroRNA-24 Regulates Osteogenic Differentiation via Targeting T-Cell Factor-1. Int. J. Mol. Sci. 2015;16:11699–11712. doi: 10.3390/ijms160511699. PubMed DOI PMC
Wu T., Zhou H., Hong Y., Li J., Jiang X., Huang H. miR-30 Family Members Negatively Regulate Osteoblast Differentiation. J. Biol. Chem. 2012;287:7503–7511. doi: 10.1074/jbc.M111.292722. PubMed DOI PMC
Deng Y., Wu S., Zhou H., Bi X., Wang Y., Hu Y., Gu P., Fan X., Sehic A., Tulek A., et al. Effects of a miR-31, Runx2, and Satb2 Regulatory Loop on the Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Stem Cells Dev. 2013;22:2278–2286. doi: 10.1089/scd.2012.0686. PubMed DOI
Baglìo S.R., Devescovi V., Granchi D., Baldini N. MicroRNA Expression Profiling of Human Bone Marrow Mesenchymal Stem Cells during Osteogenic Differentiation Reveals Osterix Regulation by MiR-31. Gene. 2013;527:321–331. doi: 10.1016/j.gene.2013.06.021. PubMed DOI
Xie Q., Wang Z., Bi X., Zhou H., Wang Y., Gu P., Fan X. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2014;446:98–104. doi: 10.1016/j.bbrc.2014.02.058. PubMed DOI
Fukuda T., Ochi H., Sunamura S., Haiden A., Bando W., Inose H., Okawa A., Asou Y., Takeda S. MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett. 2015;589:3302–3308. doi: 10.1016/j.febslet.2015.09.024. PubMed DOI
Zhang Y., Wei Q.-S., Ding W.-B., Zhang L.-L., Wang H.-C., Zhu Y.-J., He W., Chai Y.-N., Liu Y.-W. Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2. PLoS ONE. 2017;12:e0182678. doi: 10.1371/journal.pone.0182678. PubMed DOI PMC
Liu H., Liu Q., Wu X.-P., He H.-B., Fu L. MiR-96 regulates bone metabolism by targeting osterix. Clin. Exp. Pharmacol. Physiol. 2017;45:602–613. doi: 10.1111/1440-1681.12912. PubMed DOI
Zhang G., Zhang J., Zhu C., Lin L., Wang J., Zhang H., Li J., Yu X., Zhao Z., Dong W., et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targetingBMP2. J. Cell. Mol. Med. 2016;21:254–264. doi: 10.1111/jcmm.12961. PubMed DOI PMC
Zeng Y., Qu X., Li H., Huang S., Wang S., Xu Q., Lin R., Han Q., Li J., Zhao R.C. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 2012;586:2375–2381. doi: 10.1016/j.febslet.2012.05.049. PubMed DOI
Tang J., Lin X., Zhong J., Xu F., Wu F., Liao X., Cui R., Li F., Yuan L. miR-124 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting Sp7. Mol. Med. Rep. 2019;19:3807–3814. doi: 10.3892/mmr.2019.10054. PubMed DOI
Wang H., Xie Z., Hou T., Li Z., Huang K., Gong J., Zhou W., Tang K., Xu J., Dong S. MiR-125b Regulates the Osteogenic Differentiation of Human Mesenchymal Stem Cells by Targeting BMPR1b. Cell. Physiol. Biochem. 2017;41:530–542. doi: 10.1159/000457013. PubMed DOI
Xue Z.-L., Meng Y.-L., Ge J.-H. Upregulation of miR-132 attenuates osteoblast differentiation of UC-MSCs. Eur. Rev. Med. Pharmacol. Sci. 2018;22:1580–1587. doi: 10.26355/eurrev_201803_14562. PubMed DOI
Schaap-Oziemlak A.M., Raymakers R.A., Bergevoet S.M., Gilissen C., Jansen B.J., Adema G.J., Kögler G., le Sage C., Agami R., van der Reijden B.A., et al. MicroRNA hsa-miR-135b Regulates Mineralization in Osteogenic Differentiation of Human Unrestricted Somatic Stem Cells. Stem Cells Dev. 2010;19:877–885. doi: 10.1089/scd.2009.0112. PubMed DOI
Kong L., Zuo R., Wang M., Wang W., Xu J., Chai Y., Guan J., Kang Q. Silencing MicroRNA-137-3p, which Targets RUNX2 and CXCL12 Prevents Steroid-induced Osteonecrosis of the Femoral Head by Facilitating Osteogenesis and Angiogenesis. Int. J. Biol. Sci. 2020;16:655–670. doi: 10.7150/ijbs.38713. PubMed DOI PMC
Long H., Sun B., Cheng L., Zhao S., Zhu Y., Zhao R., Zhu J. miR-139-5p Represses BMSC Osteogenesis via Targeting Wnt/β-Catenin Signaling Pathway. DNA Cell Biol. 2017;36:715–724. doi: 10.1089/dna.2017.3657. PubMed DOI
Hwang S., Park S.-K., Lee H.Y., Kim S.W., Lee J.S., Choi E.K., You D., Kim C.-S., Suh N. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett. 2014;588:2957–2963. doi: 10.1016/j.febslet.2014.05.048. PubMed DOI
Huang C., Geng J., Wei X., Zhang R., Jiang S. MiR-144-3p regulates osteogenic differentiation and proliferation of murine mesenchymal stem cells by specifically targeting Smad4. FEBS Lett. 2016;590:795–807. doi: 10.1002/1873-3468.12112. PubMed DOI
Cao Y., Lv Q., Lv C. MicroRNA-153 suppresses the osteogenic differentiation of human mesenchymal stem cells by targeting bone morphogenetic protein receptor type II. Int. J. Mol. Med. 2015;36:760–766. doi: 10.3892/ijmm.2015.2275. PubMed DOI
Li J., Hu C., Han L., Liu L., Jing W., Tang W., Tian W., Long J. MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone. 2015;78:130–141. doi: 10.1016/j.bone.2015.05.003. PubMed DOI
Davis C., Dukes A., Drewry M., Helwa I., Johnson M.H., Isales C.M., Hill W.D., Liu Y., Shi X., Fulzele S., et al. MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Eng. Part A. 2017;23:1231–1240. doi: 10.1089/ten.tea.2016.0525. PubMed DOI PMC
Chang M., Lin H., Fu H., Wang B., Han G., Fan M. MicroRNA-195-5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading. J. Cell. Physiol. 2017;232:3762–3774. doi: 10.1002/jcp.25856. PubMed DOI
Tang Y., Zheng L., Zhou J., Chen Y., Yang L., Deng F., Hu Y. miR-203-3p participates in the suppression of diabetes-associated osteogenesis in the jaw bone through targeting Smad1. Int. J. Mol. Med. 2018;41:1595–1607. doi: 10.3892/ijmm.2018.3373. PubMed DOI PMC
Jiang X., Zhang Z., Peng T., Wang G., Xu Q., Li G. miR-204 inhibits the osteogenic differentiation of mesenchymal stem cells by targeting bone morphogenetic protein 2. Mol. Med. Rep. 2019;21:43–50. doi: 10.3892/mmr.2019.10791. PubMed DOI PMC
Hu N., Feng C., Jiang Y., Miao Q., Liu H. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. Int. J. Mol. Sci. 2015;16:10491–10506. doi: 10.3390/ijms160510491. PubMed DOI PMC
Wang C.-G., Liao Z., Xiao H., Liu H., Hu Y.-H., Liao Q.-D., Zhong D. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp. Mol. Pathol. 2019;107:77–84. doi: 10.1016/j.yexmp.2019.01.012. PubMed DOI
Qiu J., Huang G., Na N., Chen L. MicroRNA-214-5p/TGF-β/Smad2 signaling alters adipogenic differentiation of bone marrow stem cells in postmenopausal osteoporosis. Mol. Med. Rep. 2018;17:6301–6310. doi: 10.3892/mmr.2018.8713. PubMed DOI PMC
Zhu Y.-L., Wang S., Ding D.-G., Xu L., Zhu H.-T. miR-217 inhibits osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells by binding to Runx2. Mol. Med. Rep. 2017;15:3271–3277. doi: 10.3892/mmr.2017.6349. PubMed DOI
Fan F., Deng R., Lai S., Wen Q., Zeng Y., Gao L., Liu Y., Kong P., Zhong J., Su Y., et al. Inhibition of microRNA-221-5p induces osteogenic differentiation by directly targeting smad3 in myeloma bone disease mesenchymal stem cells. Oncol. Lett. 2019;18:6536–6544. doi: 10.3892/ol.2019.10992. PubMed DOI PMC
Yan J., Guo D., Yang S., Sun H., Wu B., Zhou D. Inhibition of miR-222-3p activity promoted osteogenic differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis. Biochem. Biophys. Res. Commun. 2016;470:498–503. doi: 10.1016/j.bbrc.2016.01.133. PubMed DOI
Tome M.E., López-Romero P., Albo C., Sepulveda J.C., Fernandez-Gutierrez B., Dopazo A., Bernad A., Gonzalez M.A. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2010;18:985–995. doi: 10.1038/cdd.2010.167. PubMed DOI PMC
Liu H., Sun Q., Wan C., Li L., Zhang L., Chen Z. MicroRNA-338-3p Regulates Osteogenic Differentiation of Mouse Bone Marrow Stromal Stem Cells by Targeting Runx2 and Fgfr2. J. Cell. Physiol. 2014;229:1494–1502. doi: 10.1002/jcp.24591. PubMed DOI
Long H., Zhu Y., Lin Z., Wan J., Cheng L., Zeng M., Tang Y., Zhao R. miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development. Cell Death Dis. 2019;10:470. doi: 10.1038/s41419-019-1693-z. PubMed DOI PMC
Tang J., Zhang Z., Jin X., Shi H. miR-383 negatively regulates osteoblastic differentiation of bone marrow mesenchymal stem cells in rats by targeting Satb2. Bone. 2018;114:137–143. doi: 10.1016/j.bone.2018.06.010. PubMed DOI
Kim E.-J., Kang I.-H., Lee J.W., Jang W.-G., Koh J.-T. MiR-433 mediates ERRγ-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sci. 2013;92:562–568. doi: 10.1016/j.lfs.2013.01.015. PubMed DOI
Kim Y.J., Hwang S.H., Lee S.Y., Shin K.K., Cho H.H., Bae Y.C., Jung J.S., Li J., Ohliger J., Pei M., et al. miR-486-5p Induces Replicative Senescence of Human Adipose Tissue-Derived Mesenchymal Stem Cells and Its Expression Is Controlled by High Glucose. Stem Cells Dev. 2012;21:1749–1760. doi: 10.1089/scd.2011.0429. PubMed DOI
Liu L., Liu M., Li R., Liu H., Du L., Chen H., Zhang Y., Zhang S., Liu D. MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol. Int. 2016;41:112–123. doi: 10.1002/cbin.10704. PubMed DOI
Hao C., Yang S., Xu W., Shen J.K., Ye S., Liu X., Dong Z., Xiao B., Feng Y. MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3. Sci. Rep. 2016;6:22599. doi: 10.1038/srep22599. PubMed DOI PMC
Wang Q., Wang C.-H., Meng Y. microRNA-1297 promotes the progression of osteoporosis through regulation of osteogenesis of bone marrow mesenchymal stem cells by targeting WNT5A. Eur. Rev. Med. Pharmacol. Sci. 2019;23:4541–4550. doi: 10.26355/eurrev_201906_18029. PubMed DOI
Camp E., Pribadi C.M.P., Anderson P.J., Zannettino A.C.W., Gronthos S. miRNA-376c-3p Mediates TWIST-1 Inhibition of Bone Marrow-Derived Stromal Cell Osteogenesis and Can Reduce Aberrant Bone Formation of TWIST-1 Haploinsufficient Calvarial Cells. Stem Cells Dev. 2018;27:1621–1633. doi: 10.1089/scd.2018.0083. PubMed DOI
Chen Z., Liu H. Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal ligament-derived stem cell proliferation, migration, and osteogenic differentiation. J. Oral Pathol. Med. 2016;46:313–320. doi: 10.1111/jop.12492. PubMed DOI
Xie Q., Wei W., Ruan J., Ding Y., Zhuang A., Bi X., Sun H., Gu P., Wang Z., Fan X. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci. Rep. 2017;7:42840. doi: 10.1038/srep42840. PubMed DOI PMC
Zhang J.-F., Fu W.-M., He M.-L., Wang H., Wang W.-M., Yu S.-C., Bian X.-W., Zhou J., Lin M.C.M., Lu G., et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell. 2011;22:3955–3961. doi: 10.1091/mbc.e11-04-0356. PubMed DOI PMC
Lian W.-S., Wu R.-W., Lee M.S., Chen Y.-S., Sun Y.-C., Wu S.-L., Ke H.-J., Ko J.-Y., Wang F.-S. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4. J. Mol. Med. 2017;95:1327–1340. doi: 10.1007/s00109-017-1583-8. PubMed DOI
Kim Y.J., Bae S.W., Yu S.S., Bae Y.C., Jung J.S. miR-196a Regulates Proliferation and Osteogenic Differentiation in Mesenchymal Stem Cells Derived from Human Adipose Tissue. J. Bone Miner. Res. 2009;24:816–825. doi: 10.1359/jbmr.081230. PubMed DOI
Chen B., Meng J., Zeng Y.-T., Du Y.-X., Zhang J., Si Y.-M., Yuan X. MicroRNA-7-5p regulates osteogenic differentiation of hMSCs via targeting CMKLR1. Eur. Rev. Med. Pharmacol. Sci. 2018;22:7826–7831. doi: 10.26355/eurrev_201811_16407. PubMed DOI
Cai Q., Zheng P., Ma F., Zhang H., Li Z., Fu Q., Han C., Sun Y. MicroRNA-224 enhances the osteoblastic differentiation of hMSCs via Rac1. Cell Biochem. Funct. 2019;37:62–71. doi: 10.1002/cbf.3373. PubMed DOI
Mizuno Y., Tokuzawa Y., Ninomiya Y., Yagi K., Yatsuka-Kanesaki Y., Suda T., Fukuda T., Katagiri T., Kondoh Y., Amemiya T., et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 2009;583:2263–2268. doi: 10.1016/j.febslet.2009.06.006. PubMed DOI
Li H., Xie H., Liu W., Hu R., Huang B., Tan Y.F., Liao E.Y., Xu K., Sheng Z.F., Zhou H.D., et al. A Novel MicroRNA Targeting HDAC5 Regulates Osteoblast Differentiation in Mice and Contributes to Primary Osteoporosis in Humans. J. Clin. Investig. 2009;119:3666–3677. doi: 10.1172/JCI39832. PubMed DOI PMC
Dai Z., Jin Y., Zheng J., Liu K., Zhao J., Zhang S., Wu F., Sun Z. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed. Pharmacother. 2018;109:1112–1119. doi: 10.1016/j.biopha.2018.10.166. PubMed DOI
Goff L.A., Boucher S., Ricupero C.L., Fenstermacher S., Swerdel M., Chase L.G., Adams C.C., Chesnut J., Lakshmipathy U., Hart R.P. Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: Prediction of microRNA regulation by PDGF during osteogenesis. Exp. Hematol. 2008;36:1354–1369.e2. doi: 10.1016/j.exphem.2008.05.004. PubMed DOI PMC
Xia P., Gu R., Zhang W., Shao L., Li F., Wu C., Sun Y. MicroRNA-200c promotes osteogenic differentiation of human bone mesenchymal stem cells through activating the AKT/β-Catenin signaling pathway via downregulating Myd88. J. Cell. Physiol. 2019;234:22675–22686. doi: 10.1002/jcp.28834. PubMed DOI
Yang C., Liu X., Zhao K., Zhu Y., Hu B., Zhou Y., Wang M., Wu Y., Zhang C., Xu J., et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res. Ther. 2019;10:65. doi: 10.1186/s13287-019-1168-2. PubMed DOI PMC
Liu X., Xu H., Kou J., Wang Q., Zheng X., Yu T. MiR-9 promotes osteoblast differentiation of mesenchymal stem cells by inhibiting DKK1 gene expression. Mol. Biol. Rep. 2016;43:939–946. doi: 10.1007/s11033-016-4030-y. PubMed DOI
Li H., Fan J., Fan L., Li T., Yang Y., Xu H., Deng L., Li J., Li T., Weng X., et al. MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF-β/Smad2 Signaling Pathway. Aging Dis. 2018;9:1058–1073. doi: 10.14336/AD.2018.0214. PubMed DOI PMC
Jia J., Feng X., Xu W., Yang S., Zhang Q., Liu X., Dai Y.F.Z. MiR-17-5p Modulates Osteoblastic Differentiation and Cell Proliferation by Targeting SMAD7 in Non-Traumatic Osteonecrosis. Exp. Mol. Med. 2014;46:e107–e108. doi: 10.1038/emm.2014.43. PubMed DOI PMC
Valenti M.T., Deiana M., Cheri S., Dotta M., Zamboni F., Gabbiani D., Schena F., Carbonare L.D., Mottes M. Physical Exercise Modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p Expression in Progenitor Cells Promoting Osteogenesis. Cells. 2019;8:742. doi: 10.3390/cells8070742. PubMed DOI PMC
Hu H., Zhao C., Zhang P., Liu Y., Jiang Y., Wu E., Xue H., Liu C., Li Z. miR-26b modulates OA induced BMSC osteogenesis through regulating GSK3β/β-catenin pathway. Exp. Mol. Pathol. 2019;107:158–164. doi: 10.1016/j.yexmp.2019.02.003. PubMed DOI
Sun F., Wan M., Xu X., Gao B., Zhou Y., Sun J., Cheng L., Klein O., Zhou X., Zheng L. Crosstalk between miR-34a and Notch Signaling Promotes Differentiation in Apical Papilla Stem Cells (SCAPs) J. Dent. Res. 2014;93:589–595. doi: 10.1177/0022034514531146. PubMed DOI
Hupkes M., Sotoca A.M., Hendriks J.M., van Zoelen E.J., Dechering K.J. MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells. BMC Mol. Biol. 2014;15:1. doi: 10.1186/1471-2199-15-1. PubMed DOI PMC
Wang Q., Cai J., Cai X.-H., Chen L. miR-346 Regulates Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Targeting the Wnt/β-Catenin Pathway. PLoS ONE. 2013;8:e72266. doi: 10.1371/journal.pone.0072266. PubMed DOI PMC
Li J., Dong J., Zhang Z., Zhang D., You X., Zhong Y., Chen M., Liu S. miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4. J. Cell. Physiol. 2013;228:2324–2336. doi: 10.1002/jcp.24402. PubMed DOI PMC
Gámez B., Rodríguez-Carballo E., Bartrons R., Rosa J.L., Ventura F. MicroRNA-322 (miR-322) and Its Target Protein Tob2 Modulate Osterix (Osx) mRNA Stability. J. Biol. Chem. 2013;288:14264–14275. doi: 10.1074/jbc.M112.432104. PubMed DOI PMC
Yang N., Wang G., Hu C., Shi Y., Liao L., Shi S., Cai Y., Cheng S., Wang X., Liu Y., et al. Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J. Bone Miner. Res. 2012;28:559–573. doi: 10.1002/jbmr.1798. PubMed DOI
Laine S.K., Alm J.J., Virtanen S.P., Aro H.T., Laitala-Leinonen T.K. MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells. J. Cell. Biochem. 2012;113:2687–2695. doi: 10.1002/jcb.24144. PubMed DOI
Huang S., Wang S., Bian C., Yang Z., Zhou H., Zeng Y., Li H., Han Q., Zhao R.C., Li B., et al. Upregulation of miR-22 Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells by Repressing HDAC6 Protein Expression. Stem Cells Dev. 2012;21:2531–2540. doi: 10.1089/scd.2012.0014. PubMed DOI PMC
Zhang W.-B., Zhong W.-J., Wang L. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone. 2014;58:59–66. doi: 10.1016/j.bone.2013.09.015. PubMed DOI
Zhao R., Li Y., Lin Z., Wan J., Xu C., Zeng Y., Zhu Y. miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3β/β-catenin signaling pathway. Biochem. Biophys. Res. Commun. 2016;477:749–754. doi: 10.1016/j.bbrc.2016.06.130. PubMed DOI
Zhang J., Tu Q., Bonewald L.F., He X., Stein G., Lian J., Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J. Bone Miner. Res. 2011;26:1953–1963. doi: 10.1002/jbmr.377. PubMed DOI PMC
Tang X., Lin J., Wang G., Lu J. MicroRNA-433-3p Promotes Osteoblast Differentiation through Targeting DKK1 Expression. PLoS ONE. 2017;12:e0179860. doi: 10.1371/journal.pone.0179860. PubMed DOI PMC
Wu S., Liu W., Zhou L. MiR-590-3p regulates osteogenic differentiation of human mesenchymal stem cells by regulating APC gene. Biochem. Biophys. Res. Commun. 2016;478:1582–1587. doi: 10.1016/j.bbrc.2016.08.160. PubMed DOI
Gu C., Xu Y., Zhang S., Guan H., Song S., Wang X., Wang Y., Li Y., Zhao G. miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1. Sci. Rep. 2016;6:38491. doi: 10.1038/srep38491. PubMed DOI PMC
Liu Z., Chang H., Hou Y., Wang Y., Zhou Z., Wang M., Huang Z., Yu B. Lentivirus-mediated microRNA-26a overexpression in bone mesenchymal stem cells facilitates bone regeneration in bone defects of calvaria in mice. Mol. Med. Rep. 2018;18:5317–5326. doi: 10.3892/mmr.2018.9596. PubMed DOI PMC
Su X., Liao L., Shuai Y., Jing H., Liu S., Zhou H., Liu Y., Jin Y. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis. 2015;6:e1851. doi: 10.1038/cddis.2015.221. PubMed DOI PMC
Liu H., Su H., Wang X., Hao W. MiR-148a regulates bone marrow mesenchymal stem cells-mediated fracture healing by targeting insulin-like growth factor 1. J. Cell. Biochem. 2018;120:1350–1361. doi: 10.1002/jcb.27121. PubMed DOI
Fan X., Teng Y., Ye Z., Zhou Y., Tan W.-S. Gap junction-mediated MiR-200b on osteogenesis and angiogenesis in coculture between MSCs and HUVECs. J. Cell Sci. 2018;131:jcs.216135. doi: 10.1242/jcs.216135. PubMed DOI
Yan X., Wang H., Li Y., Jiang Y., Shao Q., Xu W. MicroRNA-92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6-mediated runt-related transcription factor 2 degradation. Mol. Med. Rep. 2018;17:7821–7826. doi: 10.3892/mmr.2018.8829. PubMed DOI
Vishal M., Vimalraj S., Ajeetha R., Gokulnath M., Keerthana R., He Z., Partridge N., Selvamurugan N. MicroRNA-590-5p Stabilizes Runx2 by Targeting Smad7 During Osteoblast Differentiation. J. Cell. Physiol. 2016;232:371–380. doi: 10.1002/jcp.25434. PubMed DOI
Yang S., Guo S., Tong S., Sun X. Exosomal miR-130a-3p regulates osteogenic differentiation of Human Adipose-Derived stem cells through mediating SIRT7/Wnt/β-catenin axis. Cell Prolif. 2020;53:e12890. doi: 10.1111/cpr.12890. PubMed DOI PMC
Liu J., Wang X., Song M., Du J., Yu J., Zheng W., Zhang C., Wang Y. MiR-497-5p Regulates Osteo/Odontogenic Differentiation of Stem Cells from Apical Papilla via the Smad Signaling Pathway by Targeting Smurf2. Front. Genet. 2020;11:582366. doi: 10.3389/fgene.2020.582366. PubMed DOI PMC
Lin E.A., Kong L., Bai X.-H., Luan Y., Liu C.-J. miR-199a*, a Bone Morphogenic Protein 2-responsive MicroRNA, Regulates Chondrogenesis via Direct Targeting to Smad1. J. Biol. Chem. 2009;284:11326–11335. doi: 10.1074/jbc.M807709200. PubMed DOI PMC
Guérit D., Brondello J.-M., Chuchana P., Philipot D., Toupet K., Bony C., Jorgensen C., Noël D. FOXO3A Regulation by miRNA-29a Controls Chondrogenic Differentiation of Mesenchymal Stem Cells and Cartilage Formation. Stem Cells Dev. 2014;23:1195–1205. doi: 10.1089/scd.2013.0463. PubMed DOI
Gong M., Liang T., Jin S., Dai X., Zhou Z., Gao M., Huang S., Luo J., Zou L., Zou X. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions. Am. J. Transl. Res. 2017;9:4111–4124. PubMed PMC
Bai M., Yin H., Zhao J., Li Y., Wu Y. miR-182-5p overexpression inhibits chondrogenesis by down-regulating PTHLH. Cell Biol. Int. 2019;43:222–232. doi: 10.1002/cbin.11047. PubMed DOI
Zhang H., Wang Y., Yang G., Yu H., Zhou Z., Tang M. MicroRNA-30a regulates chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells through targeting Sox9. Exp. Ther. Med. 2019;18:4689–4697. doi: 10.3892/etm.2019.8148. PubMed DOI PMC
Wa Q., He P., Huang S., Zuo J., Li X., Zhu J., Hong S., Lv G., Cai D., Xu D., et al. miR-30b regulates chondrogenic differentiation of mouse embryo-derived stem cells by targeting SOX9. Exp. Ther. Med. 2017;14:6131–6137. doi: 10.3892/etm.2017.5344. PubMed DOI PMC
Lee S., Yoon D.S., Paik S., Lee K.-M., Jang Y., Lee J.W. microRNA-495 Inhibits Chondrogenic Differentiation in Human Mesenchymal Stem Cells by Targeting Sox9. Stem Cells Dev. 2014;23:1798–1808. doi: 10.1089/scd.2013.0609. PubMed DOI PMC
Yang B., Guo H., Zhang Y., Chen L., Ying D., Dong S. MicroRNA-145 Regulates Chondrogenic Differentiation of Mesenchymal Stem Cells by Targeting Sox9. PLoS ONE. 2011;6:e21679. doi: 10.1371/journal.pone.0021679. PubMed DOI PMC
Paik S., Jung H.S., Lee S., Yoon D.S., Park M.S., Lee J.W. miR-449a Regulates the Chondrogenesis of Human Mesenchymal Stem Cells Through Direct Targeting of Lymphoid Enhancer-Binding Factor-1. Stem Cells Dev. 2012;21:3298–3308. doi: 10.1089/scd.2011.0732. PubMed DOI PMC
Guérit D., Philipot D., Chuchana P., Toupet K., Brondello J.-M., Mathieu M., Jorgensen C., Noël D. Sox9-Regulated miRNA-574-3p Inhibits Chondrogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE. 2013;8:e62582. doi: 10.1371/journal.pone.0062582. PubMed DOI PMC
Lolli A., Narcisi R., Lambertini E., Penolazzi L., Angelozzi M., Kops N., Gasparini S., van Osch G.J., Piva R. Silencing of Antichondrogenic MicroRNA-221 in Human Mesenchymal Stem Cells Promotes Cartilage Repair In Vivo. Stem Cells. 2016;34:1801–1811. doi: 10.1002/stem.2350. PubMed DOI
Anderson B.A., McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J. Orthop. Res. 2017;35:2369–2377. doi: 10.1002/jor.23552. PubMed DOI PMC
Tian J., Rui Y.-J., Xu Y.-J., Zhang S.-A. MiR-143-3p regulates early cartilage differentiation of BMSCs and promotes cartilage damage repair through targeting BMPR2. Eur. Rev. Med. Pharmacol. Sci. 2018;22:8814–8821. PubMed
Xiao Y., Yan X., Yang Y., Ma X. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway. Biomed. Pharmacother. 2018;109:1569–1577. doi: 10.1016/j.biopha.2018.10.181. PubMed DOI
Huang T., Zhou Y., Wang J., Cao Y., Hang D.H. MiR-26b Regulates Cartilage Differentiation of Bone Marrow Mesenchymal Stem Cells in Rats through the Wnt/β-Catenin Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019;23:5084–5092. PubMed
Shen P.F., Wang B., Qu Y.X., Zheng C., Xu J.D., Xie Z.K., Ma Y. MicroRNA-23c Inhibits Articular Cartilage Damage Recovery by Regulating MSCs Differentiation to Chondrocytes via Reducing FGF2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:932–940. doi: 10.26355/eurrev_201902_16979. PubMed DOI
Zhao C., Miao Y., Cao Z., Shi J., Li J., Kang F., Dou C., Xie Z., Xiang Q., Dong S. MicroRNA-29b regulates hypertrophy of murine mesenchymal stem cells induced toward chondrogenesis. J. Cell. Biochem. 2019;120:8742–8753. doi: 10.1002/jcb.28161. PubMed DOI
Xu J., Kang Y., Liao W.-M., Yu L. MiR-194 Regulates Chondrogenic Differentiation of Human Adipose-Derived Stem Cells by Targeting Sox5. PLoS ONE. 2012;7:e31861. doi: 10.1371/journal.pone.0031861. PubMed DOI PMC
Hou C., Yang Z., Kang Y., Zhang Z., Fu M., He A., Zhang Z., Liao W. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway. FEBS Lett. 2015;589:1040–1047. doi: 10.1016/j.febslet.2015.02.017. PubMed DOI
Miyaki S., Nakasa T., Otsuki S., Grogan S.P., Higashiyama R., Inoue A., Kato Y., Sato T., Lotz M.K., Asahara H. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60:2723–2730. doi: 10.1002/art.24745. PubMed DOI PMC
Tuddenham L., Wheeler G., Ntounia-Fousara S., Waters J., Hajihosseini M.K., Clark I., Dalmay T. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580:4214–4217. doi: 10.1016/j.febslet.2006.06.080. PubMed DOI
Barter M.J., Tselepi M., Gómez R., Woods S., Hui W., Smith G.R., Shanley D.P., Clark I.M., Young D.A. Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. Stem Cells. 2015;33:3266–3280. doi: 10.1002/stem.2093. PubMed DOI PMC
Karlsen T.A., Jakobsen R.B., Mikkelsen T.S., Brinchmann J.E. microRNA-140 Targets RALA and Regulates Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Translational Enhancement of SOX9 and ACAN. Stem Cells Dev. 2014;23:290–304. doi: 10.1089/scd.2013.0209. PubMed DOI
Lin X., Wu L., Zhang Z., Yang R., Guan Q., Hou X., Wu Q. MiR-335-5p Promotes Chondrogenesis in Mouse Mesenchymal Stem Cells and Is Regulated Through Two Positive Feedback Loops. J. Bone Miner. Res. 2013;29:1575–1585. doi: 10.1002/jbmr.2163. PubMed DOI
Tian Y., Guo R., Shi B., Chen L., Yang L., Fu Q. MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression. Life Sci. 2016;148:220–228. doi: 10.1016/j.lfs.2016.02.031. PubMed DOI
Mao G., Hu S., Zhang Z., Wu P., Zhao X., Lin R., Liao W., Kang Y. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J. Cell. Mol. Med. 2018;22:5354–5366. doi: 10.1111/jcmm.13808. PubMed DOI PMC
Meng F., Li Z., Zhang Z., Yang Z., Kang Y., Zhao X., Long D., Hu S., Gu M., He S., et al. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics. 2018;8:2862–2883. doi: 10.7150/thno.23547. PubMed DOI PMC
Sun H., Huang Z., Wu P., Chang Z., Liao W., Zhang Z. CDK6 and miR-320c Co-Regulate Chondrocyte Catabolism Through NF-κB Signaling Pathways. Cell. Physiol. Biochem. 2018;51:909–923. doi: 10.1159/000495392. PubMed DOI
Wu Z., Qiu X., Gao B., Lian C., Peng Y., Liang A., Xu C., Gao W., Zhang L., Su P., et al. Melatonin-mediated miR-526b-3p and miR-590-5p upregulation promotes chondrogenic differentiation of human mesenchymal stem cells. J. Pineal Res. 2018;65:e12483. doi: 10.1111/jpi.12483. PubMed DOI
Zhou X., Luo D., Sun H., Qi Y., Xu W., Jin X., Li C., Lin Z., Li G. MiR-132-3p regulates ADAMTS-5 expression and promotes chondrogenic differentiation of rat mesenchymal stem cells. J. Cell. Biochem. 2017;119:2579–2587. doi: 10.1002/jcb.26421. PubMed DOI
Çelik E., Bayram C., Denkbaş E.B. Chondrogenesis of human mesenchymal stem cells by microRNA loaded triple polysaccharide nanoparticle system. Mater. Sci. Eng. C. 2019;102:756–763. doi: 10.1016/j.msec.2019.05.006. PubMed DOI
Lee J.M., Ko J.-Y., Kim H.Y., Park J.-W., Guilak F., Im G.-I. miR-892b Inhibits Hypertrophy by Targeting KLF10 in the Chondrogenesis of Mesenchymal Stem Cells. Mol. Ther. Nucleic Acids. 2019;17:310–322. doi: 10.1016/j.omtn.2019.05.029. PubMed DOI PMC
Lu J., Zhou Z., Sun B., Han B., Fu Q., Han Y., Yuan W., Xu Z., Chen A. MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging. 2020;12:18545–18560. doi: 10.18632/aging.103831. PubMed DOI PMC
Xue Z., Meng Y., Ge J. miR-127-5p promotes chondrogenic differentiation in rat bone marrow mesenchymal stem cells. Exp. Ther. Med. 2017;14:1481–1486. doi: 10.3892/etm.2017.4711. PubMed DOI PMC
Lakshmipathy U., Hart R.P. Concise Review: MicroRNA Expression in Multipotent Mesenchymal Stromal Cells. Stem Cells. 2007;26:356–363. doi: 10.1634/stemcells.2007-0625. PubMed DOI PMC
Yang Z., Bian C., Zhou H., Huang S., Wang S., Liao L., Zhao R.C., Nardelli C., Granata I., Iaffaldano L., et al. MicroRNA hsa-miR-138 Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Through Adenovirus EID-1. Stem Cells Dev. 2011;20:259–267. doi: 10.1089/scd.2010.0072. PubMed DOI
Sun F., Wang J., Pan Q., Yu Y., Zhang Y., Wan Y., Wang J., Li X., Hong A. Characterization of function and regulation of miR-24-1 and miR-31. Biochem. Biophys. Res. Commun. 2009;380:660–665. doi: 10.1016/j.bbrc.2009.01.161. PubMed DOI
Chen L., Cui J., Hou J., Long J., Li C., Liu L. A Novel Negative Regulator of Adipogenesis: MicroRNA-363. Stem Cells. 2014;32:510–520. doi: 10.1002/stem.1549. PubMed DOI
Chen L., Chen Y., Zhang S., Ye L., Cui J., Sun Q., Li K., Wu H., Liu L. MiR-540 as a Novel Adipogenic Inhibitor Impairs Adipogenesis Via Suppression of PPARγ. J. Cell. Biochem. 2015;116:969–976. doi: 10.1002/jcb.25050. PubMed DOI
Liu L., Liu H., Chen M., Ren S., Cheng P., Zhang H. miR-301b~miR-130b—PPARγ axis underlies the adipogenic capacity of mesenchymal stem cells with different tissue origins. Sci. Rep. 2017;7:1160. doi: 10.1038/s41598-017-01294-2. PubMed DOI PMC
Huang W., Li K., Liu A., Yang Z., Hu C., Chen D., Wang H. miR-330-5p inhibits H2O2-induced adipogenic differentiation of MSCs by regulating RXRγ. Int. J. Mol. Med. 2018;42:2042–2052. doi: 10.3892/ijmm.2018.3773. PubMed DOI PMC
Hu X., Tang J., Hu X., Bao P., Pan J., Chen Z., Xian J. Expression of Concern: MiR-27b Impairs Adipocyte Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells by Targeting LPL. Cell. Physiol. Biochem. 2018;47:545–555. doi: 10.1159/000489988. PubMed DOI
Li X., Yang Y., Yan R., Xu X., Gao L., Mei J., Liu J., Wang X., Zhang J., Wu P., et al. miR-377-3p regulates adipogenic differentiation of human bone marrow mesenchymal stem cells by regulating LIFR. Mol. Cell. Biochem. 2018;449:295–303. doi: 10.1007/s11010-018-3366-0. PubMed DOI
Liu Y., Wang Y., He X., Zhang S., Wang K., Wu H., Chen L. LncRNA TINCR/miR-31-5p/C/EBP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res. 2018;32:35–42. doi: 10.1016/j.scr.2018.08.016. PubMed DOI
Wang Y., Yang L., Liu X., Hong T., Wang T., Dong A., Li J., Xu X., Cao L. MiR-431 Inhibits Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Targeting Insulin Receptor Substance 2. Stem Cell Res. Ther. 2018;9:231. doi: 10.1186/s13287-018-0980-4. PubMed DOI PMC
Karbiener M., Fischer C., Nowitsch S., Opriessnig P., Papak C., Ailhaud G., Dani C., Amri E.-Z., Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun. 2009;390:247–251. doi: 10.1016/j.bbrc.2009.09.098. PubMed DOI
Skårn M., Namløs H.M., Noordhuis P., Wang M.-Y., Meza-Zepeda L.A., Myklebost O. Adipocyte Differentiation of Human Bone Marrow-Derived Stromal Cells Is Modulated by MicroRNA-155, MicroRNA-221, and MicroRNA-222. Stem Cells Dev. 2012;21:873–883. doi: 10.1089/scd.2010.0503. PubMed DOI
Chen L., Hou J., Ye L., Chen Y., Cui J., Tian W., Li C., Liu L. MicroRNA-143 Regulates Adipogenesis by Modulating the MAP2K5–ERK5 Signaling. Sci. Rep. 2014;4:3819. doi: 10.1038/srep03819. PubMed DOI PMC
Trohatou O., Zagoura D., Orfanos N.K., Pappa K.I., Marinos E., Anagnou N.P., Roubelakis M.G. miR-26a Mediates Adipogenesis of Amniotic Fluid Mesenchymal Stem/Stromal Cells via PTEN, Cyclin E1, and CDK6. Stem Cells Dev. 2017;26:482–494. doi: 10.1089/scd.2016.0203. PubMed DOI
Li K., Wu Y., Yang H., Hong P., Fang X., Hu Y. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J. Cell. Physiol. 2019;234:20925–20934. doi: 10.1002/jcp.28697. PubMed DOI
Shuai Y., Yang R., Mu R., Yu Y., Rong L., Jin L. MiR-199a-3p mediates the adipogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating KDM6A/WNT signaling. Life Sci. 2019;220:84–91. doi: 10.1016/j.lfs.2019.01.051. PubMed DOI
Hamam D., Ali D., Vishnubalaji R., Hamam R., Al-Nbaheen M., Chen L., Kassem M., Aldahmash A., Alajez N.M. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis. 2014;5:e1499. doi: 10.1038/cddis.2014.462. PubMed DOI PMC
Oskowitz A.Z., Lu J., Penfornis P., Ylostalo J., McBride J., Flemington E.K., Prockop D.J., Pochampally R. Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression. Proc. Natl. Acad. Sci. USA. 2008;105:18372–18377. doi: 10.1073/pnas.0809807105. PubMed DOI PMC
Zaragosi L.-E., Wdziekonski B., Brigand K., Villageois P., Mari B., Waldmann R., Dani C., Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 2011;12:R64. doi: 10.1186/gb-2011-12-7-r64. PubMed DOI PMC
Kim Y.J., Hwang S.J., Bae Y.C., Jung J.S. MiR-21 Regulates Adipogenic Differentiation through the Modulation of TGF-β Signaling in Mesenchymal Stem Cells Derived from Human Adipose Tissue. Stem Cells. 2009;27:3093–3102. doi: 10.1002/stem.235. PubMed DOI
Karbiener M., Pisani D.F., Frontini A., Oberreiter L.M., Lang E., Vegiopoulos A., Mössenböck K., Bernhardt G.A., Mayr T., Hildner F., et al. MicroRNA-26 Family Is Required for Human Adipogenesis and Drives Characteristics of Brown Adipocytes. Stem Cells. 2013;32:1578–1590. doi: 10.1002/stem.1603. PubMed DOI
Karbiener M., Neuhold C., Opriessnig P., Prokesch A., Bogner-Strauss J.G., Scheideler M. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 2011;8:850–860. doi: 10.4161/rna.8.5.16153. PubMed DOI
Qadir A.S., Woo K.M., Ryoo H.-M., Yi T., Song S.U., Baek J.-H. MiR-124 Inhibits Myogenic Differentiation of Mesenchymal Stem Cells Via Targeting Dlx5. J. Cell. Biochem. 2014;115:1572–1581. doi: 10.1002/jcb.24821. PubMed DOI
Chen H., Li Z., Lin M., Lv X., Wang J., Wei Q., Zhang Z., Li L. MicroRNA-124-3p affects myogenic differentiation of adipose-derived stem cells by targeting Caveolin-1 during pelvic floor dysfunction in Sprague Dawley rats. Ann. Transl. Med. 2021;9:161. doi: 10.21037/atm-20-8212. PubMed DOI PMC
Hu F., Sun B., Xu P., Zhu Y., Meng X.-H., Teng G.-J., Xiao Z.-D. MiR-218 Induces Neuronal Differentiation of ASCs in a Temporally Sequential Manner with Fibroblast Growth Factor by Regulation of the Wnt Signaling Pathway. Sci. Rep. 2017;7:39427. doi: 10.1038/srep39427. PubMed DOI PMC
Yang L., Wang Z.-F., Wu H., Wang W. miR-142-5p Improves Neural Differentiation and Proliferation of Adipose-Derived Stem Cells. Cell. Physiol. Biochem. 2018;50:2097–2107. doi: 10.1159/000495054. PubMed DOI
Lim P., Patel S., Gregory L., Rameshwar P. Neurogenesis: Role for microRNAs and mesenchymal stem cells in pathological states. Curr. Med. Chem. 2010;17:2159–2167. doi: 10.2174/092986710791299894. PubMed DOI
Liang W.-C., Fu W.-M., Wang Y.-B., Sun Y.-X., Xu L.-L., Wong C.-W., Chan K.-M., Li G., Waye M.M.-Y., Zhang J.-F. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci. Rep. 2016;6:20121. doi: 10.1038/srep20121. PubMed DOI PMC
Huang Y., Zheng Y., Jia L., Li W. Long Noncoding RNA H19 Promotes Osteoblast Differentiation Via TGF-β1/Smad3/HDAC Signaling Pathway by Deriving miR-675. Stem Cells. 2015;33:3481–3492. doi: 10.1002/stem.2225. PubMed DOI
Wu J., Zhao J., Sun L., Pan Y., Wang H., Zhang W.-B. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone. 2018;108:62–70. doi: 10.1016/j.bone.2017.12.013. PubMed DOI
Zhuang W., Ge X., Yang S., Huang M., Zhuang W., Chen P., Zhang X., Fu J., Qu J., Li B. Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells From Multiple Myeloma Patients By Targeting BMP4 Transcription. Stem Cells. 2015;33:1985–1997. doi: 10.1002/stem.1989. PubMed DOI
Deng L., Hong H., Zhang X., Chen D., Chen Z., Ling J., Wu L. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochem. Biophys. Res. Commun. 2018;503:2061–2067. doi: 10.1016/j.bbrc.2018.07.160. PubMed DOI
Li Z., Jin C., Chen S., Zheng Y., Huang Y., Jia L., Ge W., Zhou Y. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol. Cell. Biochem. 2017;433:51–60. doi: 10.1007/s11010-017-3015-z. PubMed DOI
Zhang J., Tao Z., Wang Y. Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38�MAPK pathway. Int. J. Mol. Med. 2017;41:213–219. doi: 10.3892/ijmm.2017.3215. PubMed DOI PMC
Yang X., Yang J., Lei P., Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging. 2019;11:8777–8791. doi: 10.18632/aging.102264. PubMed DOI PMC
Gao Y., Xiao F., Wang C., Wang C., Cui P., Zhang X., Chen X. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J. Cell. Biochem. 2018;119:6986–6996. doi: 10.1002/jcb.26907. PubMed DOI
Jiang X.-R., Guo N., Li X.-Q., Yang H.-Y., Wang K., Zhang C.-L., Li G.-S. Long non-coding RNA HULC promotes proliferation and osteogenic differentiation of bone mesenchymal stem cells via down-regulation of miR-195. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2954–2965. doi: 10.26355/eurrev_201805_15050. PubMed DOI
Yuan H., Xu X., Feng X., Zhu E., Zhou J., Wang G., Tian L., Wang B. A novel long noncoding RNA PGC1β-OT1 regulates adipocyte and osteoblast differentiation through antagonizing miR-148a-3p. Cell Death Differ. 2019;26:2029–2045. doi: 10.1038/s41418-019-0296-7. PubMed DOI PMC
Tang S., Xie Z., Wang P., Li J., Wang S., Liu W., Li M., Wu X., Su H., Cen S., et al. LncRNA-OG Promotes the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Under the Regulation of hnRNPK. Stem Cells. 2018;37:270–283. doi: 10.1002/stem.2937. PubMed DOI PMC
Li H., Zhang Z., Chen Z., Zhang D. Osteogenic growth peptide promotes osteogenic differentiation of mesenchymal stem cells mediated by LncRNA AK141205-induced upregulation of CXCL13. Biochem. Biophys. Res. Commun. 2015;466:82–88. doi: 10.1016/j.bbrc.2015.08.112. PubMed DOI
Cui Y., Lu S., Tan H., Li J., Zhu M., Xu Y. Silencing of Long Non-Coding RNA NONHSAT009968 Ameliorates the Staphylococcal Protein A-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells. Cell. Physiol. Biochem. 2016;39:1347–1359. doi: 10.1159/000447839. PubMed DOI
Shang G., Wang Y., Xu Y., Zhang S., Sun X., Guan H., Zhao X., Wang Y., Li Y., Zhao G. Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. J. Cell. Physiol. 2018;233:6041–6051. doi: 10.1002/jcp.26424. PubMed DOI PMC
Cao B., Liu N., Wang W. High glucose prevents osteogenic differentiation of mesenchymal stem cells via lncRNA AK028326/CXCL13 pathway. BioMedicine. 2016;84:544–551. doi: 10.1016/j.biopha.2016.09.058. PubMed DOI
Zhang L., Sun X., Chen S., Yang C., Shi B., Zhou L., Zhao J. Long noncoding RNA DANCR regulates miR-1305-Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells. Biosci. Rep. 2017;37:BSR20170347. doi: 10.1042/BSR20170347. PubMed DOI PMC
Ou F., Su K., Sun J., Liao W., Yao Y., Zheng Y., Zhang Z. The LncRNA ZBED3-AS1 induces chondrogenesis of human synovial fluid mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2017;487:457–463. doi: 10.1016/j.bbrc.2017.04.090. PubMed DOI
Huang Y., Zheng Y., Jin C., Li X., Jia L., Li W. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci. Rep. 2016;6:28897. doi: 10.1038/srep28897. PubMed DOI PMC
Pan Y., Xie Z., Cen S., Li M., Liu W., Tang S., Ye G., Li J., Zheng G., Li Z., et al. Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin. Transl. Med. 2020;10:e227. doi: 10.1002/ctm2.227. PubMed DOI PMC
Xu H., Yang Y., Fan L., Deng L., Fan J., Li D., Li H., Zhao R.C. Lnc13728 facilitates human mesenchymal stem cell adipogenic differentiation via positive regulation of ZBED3 and downregulation of the WNT/β-catenin pathway. Stem Cell Res. Ther. 2021;12:176. doi: 10.1186/s13287-021-02250-8. PubMed DOI PMC
Li M., Xie Z., Wang P., Li J., Liu W., Tang S., Liu Z., Wu X., Wu Y., Shen H. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death Dis. 2018;9:554. doi: 10.1038/s41419-018-0627-5. PubMed DOI PMC
Kalwa M., Hänzelmann S., Otto S., Kuo C.-C., Franzen J., Joussen S., Fernandez-Rebollo E., Rath B., Koch C., Hofmann A., et al. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res. 2016;44:10631–10643. doi: 10.1093/nar/gkw802. PubMed DOI PMC
Li Y., Shan Z., Yang B., Yang D., Men C., Cui Y., Wu J. LncRNA HULC promotes epithelial and smooth-muscle-like differentiation of adipose-derived stem cells by upregulation of BMP9. Pharmazie. 2018;73:49–55. doi: 10.1691/ph.2018.7634. PubMed DOI
Farzi-Molan A., Babashah S., Bakhshinejad B., Atashi A., Taha M.F. Down-regulation of the non-coding RNA H19 and its derived miR-675 is concomitant with up-regulation of insulin-like growth factor receptor type 1 during neural-like differentiation of human bone marrow mesenchymal stem cells. Cell Biol. Int. 2018;42:940–948. doi: 10.1002/cbin.10960. PubMed DOI
Gugjoo M.B., Pal A. Mesenchymal Stem Cell Differentiation Properties and Available Microenvironment. In: Gugjoo M.B., Pal A., editors. Mesenchymal Stem Cell in Veterinary Sciences. Springer; Singapore: 2020. pp. 67–87.
Karagkouni D., Karavangeli A., Paraskevopoulou M.D., Hatzigeorgiou A.G. Characterizing MiRNA–LncRNA Interplay. In: Zhang L., Hu X., editors. Methods in Molecular Biology. Volume 2372. Humana; New York, NY, USA: 2021. pp. 243–262. PubMed
Sun X., Luo L., Li J. LncRNA MALAT1 facilitates BM-MSCs differentiation into endothelial cells via targeting miR-206/VEGFA axis. Cell Cycle. 2020;19:3018–3028. doi: 10.1080/15384101.2020.1829799. PubMed DOI PMC
Carp D.M., Liang Y. Universal or Personalized Mesenchymal Stem Cell Therapies: Impact of Age, Sex, and Biological Source. Cells. 2022;11:2077. doi: 10.3390/cells11132077. PubMed DOI PMC
Pers Y.-M., Rackwitz L., Ferreira R., Pullig O., Delfour C., Barry F., Sensebe L., Casteilla L., Fleury S., Bourin P., et al. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl. Med. 2016;5:847–856. doi: 10.5966/sctm.2015-0245. PubMed DOI PMC
Zang L.-Y., Yang X.-L., Li W.-J., Liu G.-L. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes the Osteoblast Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Targeting the microRNA-96/Osterix Axis. J. Craniofacial Surg. 2021;33:956–961. doi: 10.1097/SCS.0000000000008092. PubMed DOI
Yin J., Zheng Z., Zeng X., Zhao Y., Ai Z., Yu M., Wu Y., Jiang J., Li J., Li S. LncRNA MALAT1 Mediates Osteogenic Differentiation of Bone Mesenchymal Stem Cells by Sponging MiR-129-5p. PeerJ. 2022;10:e13355. doi: 10.7717/peerj.13355. PubMed DOI PMC
Vimalraj S., Subramanian R., Dhanasekaran A. LncRNA MALAT1 Promotes Tumor Angiogenesis by Regulating MicroRNA-150-5p/VEGFA Signaling in Osteosarcoma: In-Vitro and In-Vivo Analyses. Front. Oncol. 2021;11:742789. doi: 10.3389/fonc.2021.742789. PubMed DOI PMC
Min Z.H., Wang S., Zhou Y., Yu Z.W., Chen P.Q., Wang H.D., Gu R. Effect of Long-Chain Non-Coding RNA Small Nucleo Ar RNA Host Gene 15 on Osteogenic/Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in High Glucose Environment via Targeting Mir-497. J. Biomater. Tissue Eng. 2020;10:1655–1661. doi: 10.1166/jbt.2020.2476. DOI
Zhang L., Xie H., Li S. LncRNA LOXL1-AS1 controls osteogenic and adipocytic differentiation of bone marrow mesenchymal stem cells in postmenopausal osteoporosis through regulating the miR-196a-5p/Hmga2 axis. J. Bone Miner. Metab. 2020;38:794–805. doi: 10.1007/s00774-020-01123-z. PubMed DOI
Li D., Liu Y., Gao W., Han J., Yuan R., Zhang M., Ge Z. LncRNA HCG11 Inhibits Adipocyte Differentiation in Human Adipose-Derived Mesenchymal Stem Cells by Sponging miR-204-5p to Upregulate SIRT1. Cell Transplant. 2020;29 doi: 10.1177/0963689720968090. PubMed DOI PMC
Wang H., Wei P., Zhang Y., Li Y., Yin L. LncRNA TCONS_00023297 Regulates the Balance of Osteogenic and Adipogenic Differentiation in Bone Marrow Mesenchymal Stem Cells and the Coupling Process of Osteogenesis and Angiogenesis. Front. Cell Dev. Biol. 2021;9:697858. doi: 10.3389/fcell.2021.697858. PubMed DOI PMC
Wu W., Liang D. Effect of Long-Chain Non-Coding RNA GAS5 on Osteogenic/Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Under Oxidative Stress Through Targeting MiR-365. J. Biomater. Tissue Eng. 2019;9:1751–1757. doi: 10.1166/jbt.2019.2206. DOI
Huang M.-J., Zhao J.-Y., Xu J.-J., Li J., Zhuang Y.-F., Zhang X.-L. lncRNA ADAMTS9-AS2 Controls Human Mesenchymal Stem Cell Chondrogenic Differentiation and Functions as a ceRNA. Mol. Ther. Nucleic Acids. 2019;18:533–545. doi: 10.1016/j.omtn.2019.08.027. PubMed DOI PMC
Cao B., Dai X. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells by regulating the lncRNA H19/miR-29b-3p/SOX9 axis. FEBS Open Bio. 2020;10:2656–2665. doi: 10.1002/2211-5463.13002. PubMed DOI PMC
Zhou X., Xu W., Wang Y., Zhang H., Zhang L., Li C., Yao S., Huang Z., Huang L., Luo D. LncRNA DNM3OS regulates GREM2 via miR-127-5p to suppress early chondrogenic differentiation of rat mesenchymal stem cells under hypoxic conditions. Cell. Mol. Biol. Lett. 2021;26:22. doi: 10.1186/s11658-021-00269-6. PubMed DOI PMC
Zhu Y., Li R., Wen L.-M. Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine. 2020;137:155352. doi: 10.1016/j.cyto.2020.155352. PubMed DOI
Tan Y.-F., Tang L., OuYang W.-X., Jiang T., Zhang H., Li S.-J. β-catenin-coordinated lncRNA MALAT1 up-regulation of ZEB-1 could enhance the telomerase activity in HGF-mediated differentiation of bone marrow mesenchymal stem cells into hepatocytes. Pathol. Res. Pr. 2019;215:546–554. doi: 10.1016/j.prp.2019.01.002. PubMed DOI
Sun J., Sun X., Hu S., Wang M., Ma N., Chen J., Duan F. Long noncoding RNA SNHG1 silencing accelerates hepatocyte-like cell differentiation of bone marrow-derived mesenchymal stem cells to alleviate cirrhosis via the microRNA-15a/SMURF1/UVRAG axis. Cell Death Discov. 2022;8:77. doi: 10.1038/s41420-022-00850-8. PubMed DOI PMC
Dai X.-W., Luo W., Lv C.-L. lncRNA-MIAT facilitates the differentiation of adipose-derived mesenchymal stem cells into lymphatic endothelial cells via the miR-495/Prox1 axis. Mol. Med. Rep. 2021;23:323. doi: 10.3892/mmr.2021.11962. PubMed DOI
Wang X., Liu Y., Lei P. LncRNA HOTAIRM1 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting miR-152-3p/ETS1 axis. Mol. Biol. Rep. 2023;50:5597–5608. doi: 10.1007/s11033-023-08466-6. PubMed DOI
Ouyang X., Ding Y., Yu L., Xin F., Yang X. LncRNA TUG Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells via MiRNA-204/SIRT 1. J. Musculoskelet. Neuronal Interact. 2022;22:401–410. PubMed PMC
Han Y., Yang Q., Huang Y., Jia L., Zheng Y., Li W. Long non-coding RNA SNHG5 promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the miR-212-3p/GDF5/SMAD pathway. Stem Cell Res. Ther. 2022;13:130. doi: 10.1186/s13287-022-02781-8. PubMed DOI PMC
Ding R., Wei S., Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered. 2022;13:5855–5867. doi: 10.1080/21655979.2022.2037898. PubMed DOI PMC
Li J., Wu X., Shi Y., Zhao H. FGD5-AS1 facilitates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells via targeting the miR-506-3p/BMP7 axis. J. Orthop. Surg. Res. 2021;16:665. doi: 10.1186/s13018-021-02694-x. PubMed DOI PMC
Li J., Zhuang H., Wang Z., Cai J., Ma X., Chen W., Jiang X., Zhao D., Hou W., Tao Y. lncRNAs MALAT1 and LINC00657 upstream to miR-214-3p/BMP2 regulate osteogenic differentiation of human mesenchymal stem cells. Mol. Biol. Rep. 2022;49:6847–6857. doi: 10.1007/s11033-022-07136-3. PubMed DOI
Liu C., Liang T., Zhang Z., Chen J., Xue J., Zhan X., Ren L. MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis. 2022;28:498–513. doi: 10.1007/s10495-022-01804-2. PubMed DOI
Yan Z., He Q. LINC01234 Sponging of the miR-513a-5p/AOX1 Axis is Upregulated in Osteoporosis and Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Mol. Biotechnol. 2023:1–11. doi: 10.1007/s12033-023-00712-3. PubMed DOI
Wang F., Deng H., Chen J., Wang Z., Yin R. LncRNA MIAT can regulate the proliferation, apoptosis, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting miR-150-5p. Bioengineered. 2022;13:6343–6352. doi: 10.1080/21655979.2021.2011632. PubMed DOI PMC
Li L., Wang B., Zhou X., Ding H., Sun C., Wang Y., Zhang F., Zhao J. METTL3-mediated long non-coding RNA MIR99AHG methylation targets miR-4660 to promote bone marrow mesenchymal stem cell osteogenic differentiation. Cell Cycle. 2022;22:476–493. doi: 10.1080/15384101.2022.2125751. PubMed DOI PMC
Wang W., Li T., Feng S. Knockdown of long non-coding RNA HOTAIR promotes bone marrow mesenchymal stem cell differentiation by sponging microRNA miR-378g that inhibits nicotinamide N-methyltransferase. Bioengineered. 2021;12:12482–12497. doi: 10.1080/21655979.2021.2006863. PubMed DOI PMC
Zhao G., Luo W.D., Yuan Y., Lin F., Guo L.M., Ma J.J., Chen H.B., Tang H., Shu J. LINC02381, a Sponge of MiR-21, Weakens Osteogenic Differentiation of HUC-MSCs through KLF12-Mediated Wnt4 Transcriptional Repression. J. Bone Miner. Metab. 2022;40:66–80. doi: 10.1007/s00774-021-01277-4. PubMed DOI
Cervio E., Barile L., Moccetti T., Vassalli G. Exosomes for Intramyocardial Intercellular Communication. Stem Cells Int. 2015;2015:482171. doi: 10.1155/2015/482171. PubMed DOI PMC
Nasser M., Masood M., Adlat S., Gang D., Zhu S., Li G., Li N., Chen J., Zhu P. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed. Pharmacother. 2021;143:112118. doi: 10.1016/j.biopha.2021.112118. PubMed DOI
Hade M.D., Suire C.N., Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells. 2021;10:1959. doi: 10.3390/cells10081959. PubMed DOI PMC
Pan Q., Kuang X., Cai S., Wang X., Du D., Wang J., Wang Y., Chen Y., Bihl J., Chen Y., et al. miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res. Ther. 2020;11:260. doi: 10.1186/s13287-020-01761-0. PubMed DOI PMC
Nakano M., Fujimiya M. Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen. Res. 2021;16:2359–2366. doi: 10.4103/1673-5374.313026. PubMed DOI PMC
Fan J., Han Y., Sun H., Sun S., Wang Y., Guo R., Guo J., Tian X., Wang J., Wang J. Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. BioMedicine. 2023;162:114593. doi: 10.1016/j.biopha.2023.114593. PubMed DOI
Zou L., Ma X., Wu B., Chen Y., Xie D., Peng C. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the miR-149/let-7c/Faslg axis. Free. Radic. Res. 2020;54:722–731. doi: 10.1080/10715762.2020.1837793. PubMed DOI
Yu Y., Chen M., Guo Q., Shen L., Liu X., Pan J., Zhang Y., Xu T., Zhang D., Wei G. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cell. Mol. Biol. Lett. 2023;28:12. doi: 10.1186/s11658-023-00425-0. PubMed DOI PMC
Tian S., Zhou X., Zhang M., Cui L., Li B., Liu Y., Su R., Sun K., Hu Y., Yang F., et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res. Ther. 2022;13:330. doi: 10.1186/s13287-022-03010-y. PubMed DOI PMC
Zhang J., Gao J., Li X., Lin D., Li Z., Wang J., Chen J., Gao Z., Lin B. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN. Front. Pharmacol. 2023;14:1168545. doi: 10.3389/fphar.2023.1168545. PubMed DOI PMC
Lei G.-S., Kline H.L., Lee C.-H., Wilkes D.S., Zhang C. Regulation of Collagen V Expression and Epithelial-Mesenchymal Transition by miR-185 and miR-186 during Idiopathic Pulmonary Fibrosis. Am. J. Pathol. 2016;186:2310–2316. doi: 10.1016/j.ajpath.2016.04.015. PubMed DOI PMC
Li Y., Shen Z., Jiang X., Wang Y., Yang Z., Mao Y., Wu Z., Li G., Chen H. Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. J. Exp. Clin. Cancer Res. 2022;41:128. doi: 10.1186/s13046-022-02351-z. PubMed DOI PMC
Chen Z., Wang H., Xia Y., Yan F., Lu Y. Therapeutic Potential of Mesenchymal Cell–Derived miRNA-150-5p–Expressing Exosomes in Rheumatoid Arthritis Mediated by the Modulation of MMP14 and VEGF. J. Immunol. 2018;201:2472–2482. doi: 10.4049/jimmunol.1800304. PubMed DOI PMC
Zhang Q., Zhang Q., Cao L., Cao L., Zou S., Zou S., Feng Y., Feng Y., Miao X., Miao X., et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying MicroRNA-181c-5p Promote BMP2-Induced Repair of Cartilage Injury through Inhibition of SMAD7 Expression. Stem Cells Int. 2022;2022:1157498. doi: 10.1155/2022/1157498. PubMed DOI PMC
Mao G., Kang Y., Zhang Z., Liao W. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and prevent the development of osteoarthritis. Osteoarthr. Cartil. 2018;26:S103. doi: 10.1016/j.joca.2018.02.222. PubMed DOI PMC
Xie Z., Li J., Wang P., Li Y., Wu X., Wang S., Su H., Deng W., Liu Z., Cen S., et al. Differential Expression Profiles of Long Noncoding RNA and mRNA of Osteogenically Differentiated Mesenchymal Stem Cells in Ankylosing Spondylitis. J. Rheumatol. 2016;43:1523–1531. doi: 10.3899/jrheum.151181. PubMed DOI
Sun C., Huang L., Li Z., Leng K., Xu Y., Jiang X., Cui Y. Long non-coding RNA MIAT in development and disease: A new player in an old game. J. Biomed. Sci. 2018;25:23. doi: 10.1186/s12929-018-0427-3. PubMed DOI PMC
Tye C.E., Gordon J.A.R., Martin-Buley L.A., Stein J.L., Lian J.B., Stein G.S. Could LncRNAs Be the Missing Links in Control of Mesenchymal Stem Cell Differentiation? J. Cell Physiol. 2015;230:526–534. doi: 10.1002/jcp.24834. PubMed DOI PMC
Wang S., Li X., Zhu R., Han Q., Zhao R.C. Lung cancer exosomes initiate global long non-coding RNA changes in mesenchymal stem cells. Int. J. Oncol. 2015;48:681–689. doi: 10.3892/ijo.2015.3272. PubMed DOI
Emerging biologic and clinical implications of miR-182-5p in gynecologic cancers