Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors
Language English Country United States Media electronic
Document type Journal Article
Grant support
K00 DK123834
NIDDK NIH HHS - United States
S10 OD026839
NIH HHS - United States
T32 GM144273
NIGMS NIH HHS - United States
PubMed
39680459
PubMed Central
PMC11645142
DOI
10.1172/jci180347
PII: 180347
Knihovny.cz E-resources
- Keywords
- Genetic diseases, Nephrology, Protein misfolding, Protein traffic,
- MeSH
- Humans MeSH
- Membrane Glycoproteins metabolism genetics MeSH
- Mutation MeSH
- Mice MeSH
- Protein Transport * MeSH
- Uromodulin * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Membrane Glycoproteins MeSH
- UMOD protein, human MeSH Browser
- Umod protein, mouse MeSH Browser
- Uromodulin * MeSH
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
Department of Anatomy Charité Universitätsmedizin Berlin Germany
Institute of Physiology Christian Albrechts Universität Kiel Germany
Institute of Translational Physiology and
Proteomics Platform The Broad Institute of MIT and Harvard Cambridge Massachusetts USA
The Broad Institute of Massachusetts Institute of Technology and Harvard Cambridge Massachusetts USA
The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
See more in PubMed
Bachmann S. A novel role for Tamm-Horsfall protein (uromodulin) in the renal tubule. Kidney Int. 2018;94(4):652–655. doi: 10.1016/j.kint.2018.06.023. PubMed DOI
Devuyst O, et al. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol. 2017;13(9):525–544. doi: 10.1038/nrneph.2017.101. PubMed DOI
LaFavers KA, et al. Evolving concepts in uromodulin biology, physiology, and its role in disease: a tale of two forms. Hypertension. 2022;79(11):2409–2418. doi: 10.1161/HYPERTENSIONAHA.122.18567. PubMed DOI PMC
Bachmann S, et al. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am J Physiol Renal Physiol. 2005;288(3):F559–F567. doi: 10.1152/ajprenal.00143.2004. PubMed DOI
Schaeffer C, et al. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol Biol Cell. 2009;20(2):589–599. doi: 10.1091/mbc.e08-08-0876. PubMed DOI PMC
Brunati M, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. Elife. 2015;4:e08887. doi: 10.7554/eLife.08887. PubMed DOI PMC
Olinger E, et al. Hepsin-mediated processing of uromodulin is crucial for salt-sensitivity and thick ascending limb homeostasis. Sci Rep. 2019;9(1):12287. doi: 10.1038/s41598-019-48300-3. PubMed DOI PMC
Rampoldi L, et al. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 2011;80(4):338–347. doi: 10.1038/ki.2011.134. PubMed DOI
Youhanna S, et al. Determination of uromodulin in human urine: influence of storage and processing. Nephrol Dial Transplant. 2014;29(1):136–145. doi: 10.1093/ndt/gft345. PubMed DOI
Devuyst O, et al. UMOD and the architecture of kidney disease. Pflugers Arch. 2022;474(8):771–781. doi: 10.1007/s00424-022-02733-4. PubMed DOI PMC
Živná M, et al. Autosomal dominant tubulointerstitial kidney disease: A review. Am J Med Genet C Semin Med Genet. 2022;190(3):309–324. doi: 10.1002/ajmg.c.32008. PubMed DOI PMC
Olinger E, et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 2020;98(3):717–731. doi: 10.1016/j.kint.2020.04.038. PubMed DOI
Schaeffer C, et al. Uromodulin: roles in health and disease. Annu Rev Physiol. 2021;83:477–501. doi: 10.1146/annurev-physiol-031620-092817. PubMed DOI
Bernascone I, et al. Defective intracellular trafficking of uromodulin mutant isoforms. Traffic. 2006;7(11):1567–1579. doi: 10.1111/j.1600-0854.2006.00481.x. PubMed DOI
Schaeffer C, et al. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One. 2017;12(4):e0175970. doi: 10.1371/journal.pone.0175970. PubMed DOI PMC
Trudu M, et al. Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci Rep. 2017;7(1):7383. doi: 10.1038/s41598-017-07804-6. PubMed DOI PMC
Johnson BG, et al. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J Clin Invest. 2017;127(11):3954–3969. doi: 10.1172/JCI93817. PubMed DOI PMC
Schaeffer C, et al. Urinary secretion and extracellular aggregation of mutant uromodulin isoforms. Kidney Int. 2012;81(8):769–778. doi: 10.1038/ki.2011.456. PubMed DOI
Bernascone I, et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum Mol Genet. 2010;19(15):2998–3010. doi: 10.1093/hmg/ddq205. PubMed DOI
Dvela-Levitt M, et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell. 2019;178(3):521–535. doi: 10.1016/j.cell.2019.07.002. PubMed DOI
Satpute-Krishnan P, et al. ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell. 2014;158(3):522–533. doi: 10.1016/j.cell.2014.06.026. PubMed DOI PMC
Zavodszky E, Hegde RS. Misfolded GPI-anchored proteins are escorted through the secretory pathway by ER-derived factors. Elife. 2019;8:e46740. doi: 10.7554/eLife.46740. PubMed DOI PMC
Muñiz M, Riezman H. Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface. J Lipid Res. 2016;57(3):352–360. doi: 10.1194/jlr.R062760. PubMed DOI PMC
Castillon GA, et al. The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling. Mol Biol Cell. 2011;22(16):2924–2936. doi: 10.1091/mbc.e11-04-0294. PubMed DOI PMC
Piret SE, et al. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis Model Mech. 2017;10(6):773–786. doi: 10.1242/dmm.029488. PubMed DOI PMC
Lhotta K, et al. Epidemiology of uromodulin-associated kidney disease - results from a nation-wide survey. Nephron Extra. 2012;2(1):147–158. doi: 10.1159/000339102. PubMed DOI PMC
Turner JJO, et al. UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. J Clin Endocrinol Metab. 2003;88(3):1398–1401. doi: 10.1210/jc.2002-021973. PubMed DOI
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol. 2022;10:1096899. doi: 10.3389/fcell.2022.1096899. PubMed DOI PMC
Aber R, et al. Transmembrane emp24 domain proteins in development and disease. Genet Res (camb) 2019;101:e14. doi: 10.1017/S0016672319000090. PubMed DOI PMC
Limbutara K, et al. Quantitative proteomics of all 14 renal tubule segments in rat. J Am Soc Nephrol. 2020;31(6):1255–1266. doi: 10.1681/ASN.2020010071. PubMed DOI PMC
Gut G, et al. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361(6401):eaar7042. doi: 10.1126/science.aar7042. PubMed DOI
Scolari F, et al. Uromodulin storage diseases: clinical aspects and mechanisms. Am J Kidney Dis. 2004;44(6):987–999. doi: 10.1053/j.ajkd.2004.08.021. PubMed DOI
Scolari F, et al. Uromodulin: from monogenic to multifactorial diseases. Nephrol Dial Transplant. 2015;30(8):1250–1256. doi: 10.1093/ndt/gfu300. PubMed DOI
Kipp A, Olinger E. What does uromodulin do? Clin J Am Soc Nephrol. 2020;16(1):150–153. doi: 10.2215/CJN.06390420. PubMed DOI PMC
Mutig K, et al. Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J Biol Chem. 2011;286(34):30200–30210. doi: 10.1074/jbc.M111.222968. PubMed DOI PMC
Breiderhoff T, et al. Claudin-10a deficiency shifts proximal tubular Cl- permeability to cation selectivity via claudin-2 redistribution. J Am Soc Nephrol. 2022;33(4):699–717. doi: 10.1681/ASN.2021030286. PubMed DOI PMC
Breiderhoff T, et al. Deletion of claudin-10 rescues claudin-16-deficient mice from hypomagnesemia and hypercalciuria. Kidney Int. 2018;93(3):580–588. doi: 10.1016/j.kint.2017.08.029. PubMed DOI
Giesecke T, et al. Vasopressin increases urinary acidification via v1a receptors in collecting duct intercalated cells. J Am Soc Nephrol. 2019;30(6):946–961. doi: 10.1681/ASN.2018080816. PubMed DOI PMC
Dvela-Levitt M, et al. A rare kidney disease to cure them all? Towards mechanism-based therapies for proteinopathies. Trends Mol Med. 2021;27(4):394–409. doi: 10.1016/j.molmed.2020.11.008. PubMed DOI
Adam J, et al. Endoplasmic reticulum stress in UMOD-related kidney disease: a human pathologic study. Am J Kidney Dis. 2012;59(1):117–121. doi: 10.1053/j.ajkd.2011.08.014. PubMed DOI
Marshall JL, et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience. 2022;25(4):104097. doi: 10.1016/j.isci.2022.104097. PubMed DOI PMC
Subramanian A, et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10(1):5462. doi: 10.1038/s41467-019-13382-0. PubMed DOI PMC
Moskowitz JL, et al. Association between genotype and phenotype in uromodulin-associated kidney disease. Clin J Am Soc Nephrol. 2013;8(8):1349–1357. doi: 10.2215/CJN.11151012. PubMed DOI PMC
Groopman E, et al. Diagnostic utility of exome sequencing for kidney disease. Reply. N Engl J Med. 2019;380(21):2080–2081. doi: 10.1056/NEJMc1903250. PubMed DOI
Gast C, et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018;19(1):301. doi: 10.1186/s12882-018-1107-y. PubMed DOI PMC
Mabillard H, et al. UMOD and you! Explaining a rare disease diagnosis. J Rare Dis (Berlin) 2022;1(1):4. doi: 10.1007/s44162-022-00005-4. PubMed DOI PMC
Wuttke M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51(6):957–972. doi: 10.1038/s41588-019-0407-x. PubMed DOI PMC
Köttgen A, et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet. 2009;41(6):712–717. doi: 10.1038/ng.377. PubMed DOI PMC
Köttgen A, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–384. doi: 10.1038/ng.568. PubMed DOI PMC
Trudu M, et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med. 2013;19(12):1655–1660. doi: 10.1038/nm.3384. PubMed DOI PMC
Evangelou E, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–1425. doi: 10.1038/s41588-018-0205-x. PubMed DOI PMC
Ponte B, et al. Mendelian randomization to assess causality between uromodulin, blood pressure and chronic kidney disease. Kidney Int. 2021;100(6):1282–1291. doi: 10.1016/j.kint.2021.08.032. PubMed DOI
Olinger E, et al. An intermediate-effect size variant in UMOD confers risk for chronic kidney disease. Proc Natl Acad Sci U S A. 2022;119(33):e2114734119. doi: 10.1073/pnas.2114734119. PubMed DOI PMC
Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011) 2022;12(1):7–11. doi: 10.1016/j.kisu.2021.11.003. PubMed DOI PMC
Sundström J, et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. Lancet Reg Health Eur. 2022;20:100438. doi: 10.1016/j.lanepe.2022.100438. PubMed DOI PMC
Lim C-Y, et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol. 2019;21(10):1206–1218. doi: 10.1038/s41556-019-0391-5. PubMed DOI PMC
Quintanova C, et al. Unrecognized role of claudin-10b in basolateral membrane infoldings of the thick ascending limb. Ann N Y Acad Sci. 2022;1517(1):266–278. doi: 10.1111/nyas.14882. PubMed DOI
Mertins P, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13(7):1632–1661. doi: 10.1038/s41596-018-0006-9. PubMed DOI PMC
Schmitt R, et al. Renal expression of sodium transporters and aquaporin-2 in hypothyroid rats. Am J Physiol Renal Physiol. 2003;284(5):F1097–F1104. doi: 10.1152/ajprenal.00368.2002. PubMed DOI