Enhanced RNAi does not provide efficient innate antiviral immunity in mice
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
20-03950X
Czech Science Foundation
European Research Council - International
647403
European Union's Horizon
Charles University
23-08039S
Czech Science Foundation
LX22NPO5103
National Institute of Virology and Bacteriology
European Union-Next Generation EU
68378050
Czech Academy of Sciences
Ministry of Education
LM2023050
MEYS
ID:90254
e-INFRA CZ
90255
ELIXIR-CZ
PubMed
39778869
PubMed Central
PMC11707545
DOI
10.1093/nar/gkae1288
PII: 7945392
Knihovny.cz E-resources
- MeSH
- DEAD-box RNA Helicases genetics metabolism MeSH
- RNA, Small Interfering genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Immunity, Innate * genetics MeSH
- Ribonuclease III * genetics metabolism MeSH
- RNA Interference * MeSH
- Encephalomyocarditis virus genetics immunology MeSH
- Lymphocytic choriomeningitis virus immunology genetics MeSH
- Encephalitis Viruses, Tick-Borne genetics immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DEAD-box RNA Helicases MeSH
- Dicer1 protein, mouse MeSH Browser
- RNA, Small Interfering MeSH
- Ribonuclease III * MeSH
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified the mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi and we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: coxsackievirus B3 and encephalomyocarditis virus from Picornaviridae; tick-borne encephalitis virus from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice did not elicit any antiviral effect, supporting an insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also observed that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
In RNA interference (RNAi), the enzyme Dicer cuts long double-stranded RNA into small interfering RNAs that degrade matching RNAs. RNAi is a key antiviral defense in plants and invertebrates but vertebrates evolved a principally different antiviral defense. The authors genetically modified Dicer in mice to activate RNAi in mammals. These modified mice were tested against four RNA viruses but showed no significant antiviral response. However, further increased expression of modified Dicer did suppress one virus (lymphocytic choriomeningitis virus) in embryonic stem cells and in a transgenic mouse model, suggesting that some viruses might be sensitive to increased RNAi activity in mammals.
See more in PubMed
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391:806–811. PubMed
Ketting R.F. The many faces of RNAi. Dev. Cell. 2011; 20:148–161. PubMed
Bartel D.P. Metazoan microRNAs. Cell. 2018; 173:20–51. PubMed PMC
Zapletal D., Kubicek K., Svoboda P., Stefl R. Dicer structure and function: conserved and evolving features. EMBO Rep. 2023; 24:e57215. PubMed PMC
Zhang H., Kolb F.A., Brondani V., Billy E., Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002; 21:5875–5885. PubMed PMC
Zapletal D., Taborska E., Pasulka J., Malik R., Kubicek K., Zanova M., Much C., Sebesta M., Buccheri V., Horvat F. et al. . Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell. 2022; 82:4064–4079. PubMed PMC
Aderounmu A.M., Aruscavage P.J., Kolaczkowski B., Bass B.L. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife. 2023; 12:e85120. PubMed PMC
Ma E., MacRae I.J., Kirsch J.F., Doudna J.A. Autoinhibition of human Dicer by its internal helicase domain. J. Mol. Biol. 2008; 380:237–243. PubMed PMC
Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 2004; 15:185–197. PubMed
Liu J.D., Carmell M.A., Rivas F.V., Marsden C.G., Thomson J.M., Song J.J., Hammond S.M., Joshua-Tor L., Hannon G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004; 305:1437–1441. PubMed
Song J.J., Smith S.K., Hannon G.J., Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004; 305:1434–1437. PubMed
Chakravarthy S., Sternberg S.H., Kellenberger C.A., Doudna J.A. Substrate-specific kinetics of Dicer-catalyzed RNA processing. J. Mol. Biol. 2010; 404:392–402. PubMed PMC
Demeter T., Vaskovicova M., Malik R., Horvat F., Pasulka J., Svobodova E., Flemr M., Svoboda P. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci. Alliance. 2019; 2:e201800289. PubMed PMC
Seo G.J., Kincaid R.P., Phanaksri T., Burke J.M., Pare J.M., Cox J.E., Hsiang T.Y., Krug R.M., Sullivan C.S. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe. 2013; 14:435–445. PubMed PMC
van der Veen A.G., Maillard P.V., Schmidt J.M., Lee S.A., Deddouche-Grass S., Borg A., Kjaer S., Snijders A.P., Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J. 2018; 37:e97479. PubMed PMC
Takahashi T., Nakano Y., Onomoto K., Yoneyama M., Ui-Tei K. Virus sensor RIG-I represses RNA interference by interacting with TRBP through LGP2 in mammalian cells. Genes (Basel). 2018; 9:511. PubMed PMC
Flemr M., Malik R., Franke V., Nejepinska J., Sedlacek R., Vlahovicek K., Svoboda P. A retrotransposon-driven Dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013; 155:807–816. PubMed
Lu R., Maduro M., Li F., Li H.W., Broitman-Maduro G., Li W.X., Ding S.W. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature. 2005; 436:1040–1043. PubMed PMC
Schott D.H., Cureton D.K., Whelan S.P., Hunter C.P. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc. Natl Acad. Sci. U.S.A. 2005; 102:18420–18424. PubMed PMC
Wilkins C., Dishongh R., Moore S.C., Whitt M.A., Chow M., Machaca K. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature. 2005; 436:1044–1047. PubMed
Felix M.A., Ashe A., Piffaretti J., Wu G., Nuez I., Belicard T., Jiang Y., Zhao G., Franz C.J., Goldstein L.D. et al. . Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011; 9:e1000586. PubMed PMC
Sarkies P., Ashe A., Le Pen J., McKie M.A., Miska E.A. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res. 2013; 23:1258–1270. PubMed PMC
Saleh M.C., Tassetto M., van Rij R.P., Goic B., Gausson V., Berry B., Jacquier C., Antoniewski C., Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature. 2009; 458:346–350. PubMed PMC
Tassetto M., Kunitomi M., Andino R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017; 169:314–325. PubMed PMC
Li Y., Lu J., Han Y., Fan X., Ding S.W. RNA interference functions as an antiviral immunity mechanism in mammals. Science. 2013; 342:231–234. PubMed PMC
Maillard P.V., Ciaudo C., Marchais A., Li Y., Jay F., Ding S.W., Voinnet O. Antiviral RNA interference in mammalian cells. Science. 2013; 342:235–238. PubMed PMC
Cullen B.R., Cherry S., tenOever B.R. Is RNA interference a physiologically relevant innate antiviral immune response in mammals?. Cell Host Microbe. 2013; 14:374–378. PubMed
Li Y., Basavappa M., Lu J., Dong S., Cronkite D.A., Prior J.T., Reinecker H.C., Hertzog P., Han Y., Li W.X. et al. . Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat. Microbiol. 2016; 2:16250. PubMed PMC
Qiu Y., Xu Y., Zhang Y., Zhou H., Deng Y.Q., Li X.F., Miao M., Zhang Q., Zhong B., Hu Y. et al. . Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity. 2017; 46:992–1004. PubMed
Fang Y., Liu Z., Qiu Y., Kong J., Fu Y., Liu Y., Wang C., Quan J., Wang Q., Xu W. et al. . Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity. 2021; 54:2231–2244. PubMed
Baldaccini M., Gaucherand L., Chane-Woon-Ming B., Messmer M., Gucciardi F., Pfeffer S. The helicase domain of human Dicer prevents RNAi-independent activation of antiviral and inflammatory pathways. EMBO J. 2024; 43:806–835. PubMed PMC
Xu Y.P., Qiu Y., Zhang B., Chen G., Chen Q., Wang M., Mo F., Xu J., Wu J., Zhang R.R. et al. . Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res. 2019; 29:265–273. PubMed PMC
Zhang Y., Dai Y., Wang J., Xu Y., Li Z., Lu J., Xu Y., Zhong J., Ding S.W., Li Y. Mouse circulating extracellular vesicles contain virus-derived siRNAs active in antiviral immunity. EMBO J. 2022; 41:e109902. PubMed PMC
Qiu Y., Xu Y.P., Wang M., Miao M., Zhou H., Xu J., Kong J., Zheng D., Li R.T., Zhang R.R. et al. . Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci. Adv. 2020; 6:eaax7989. PubMed PMC
Kakumani P.K., Ponia S.S., S R.K., Sood V., Chinnappan M., Banerjea A.C., Medigeshi G.R., Malhotra P., Mukherjee S.K., Bhatnagar R.K Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J. Virol. 2013; 87:8870–8883. PubMed PMC
Han Q., Chen G., Wang J., Jee D., Li W.X., Lai E.C., Ding S.W. Mechanism and function of antiviral RNA interference in mice. mBio. 2020; 11:e03278-19. PubMed PMC
Bogerd H.P., Skalsky R.L., Kennedy E.M., Furuse Y., Whisnant A.W., Flores O., Schultz K.L., Putnam N., Barrows N.J., Sherry B. et al. . Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J. Virol. 2014; 88:8065–8076. PubMed PMC
Parameswaran P., Sklan E., Wilkins C., Burgon T., Samuel M.A., Lu R., Ansel K.M., Heissmeyer V., Einav S., Jackson W. et al. . Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog. 2010; 6:e1000764. PubMed PMC
Girardi E., Chane-Woon-Ming B., Messmer M., Kaukinen P., Pfeffer S. Identification of RNase L-dependent, 3'-end-modified, viral small RNAs in Sindbis virus-infected mammalian cells. mBio. 2013; 4:e00698-13. PubMed PMC
Girardi E., Lefevre M., Chane-Woon-Ming B., Paro S., Claydon B., Imler J.L., Meignin C., Pfeffer S. Cross-species comparative analysis of Dicer proteins during Sindbis virus infection. Sci. Rep. 2015; 5:10693. PubMed PMC
Schuster S., Overheul G.J., Bauer L., van Kuppeveld F.J.M., van Rij R.P. No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Sci. Rep. 2019; 9:13752. PubMed PMC
Schuster S., Tholen L.E., Overheul G.J., van Kuppeveld F.J.M., van Rij R.P. Deletion of cytoplasmic double-stranded RNA sensors does not uncover viral small interfering RNA production in Human cells. mSphere. 2017; 2:e00333-17. PubMed PMC
Buccheri V., Pasulka J., Malik R., Loubalova Z., Taborska E., Horvat F., Roos Kulmann M.I., Jenickova I., Prochazka J., Sedlacek R. et al. . Functional canonical RNAi in mice expressing a truncated Dicer isoform and long dsRNA. EMBO Rep. 2024; 25:2896–2913. PubMed PMC
Taborska E., Loubalova Z., Kulmann M.I.R., Malik R., Buccheri V., Pasulka J., Horvat F., Jenickova I., Sedlacek R., Svoboda P. Activated RNAi does not rescue piRNA pathway deficiency in testes. 2024; bioRxiv doi:4 July 2024, preprint: not peer reviewed10.1101/2024.07.04.602103. DOI
Schnettler E., Tykalova H., Watson M., Sharma M., Sterken M.G., Obbard D.J., Lewis S.H., McFarlane M., Bell-Sakyi L., Barry G. et al. . Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 2014; 42:9436–9446. PubMed PMC
Sanchez A.B., Perez M., Cornu T., de la Torre J.C. RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 2005; 79:11071–11081. PubMed PMC
Agudelo M., Palus M., Keeffe J.R., Bianchini F., Svoboda P., Salat J., Peace A., Gazumyan A., Cipolla M., Kapoor T. et al. . Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J. Exp. Med. 2021; 218:e20210236. PubMed PMC
Pokorna Formanova P., Palus M., Salat J., Honig V., Stefanik M., Svoboda P., Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflammation. 2019; 16:205. PubMed PMC
Horkova V., Drobek A., Paprckova D., Niederlova V., Prasai A., Uleri V., Glatzova D., Kraller M., Cesnekova M., Janusova S. et al. . Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat. Immunol. 2023; 24:174–185. PubMed PMC
Wang C., Yue F., Kuang S. Muscle histology characterization using H&E staining and Muscle Fiber type classification using immunofluorescence staining. Bio Protoc. 2017; 7:e2279. PubMed PMC
Hierholzer E., Killington R.A.. Mahy B.W., Kangro H.O. Virus isolation and quantitation. Virology Methods Manual. 1996; San Diego: Academic Press; 25–46.
De Madrid A.T., Porterfield J.S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 1969; 40:113–121. PubMed PMC
Pranclova V., Honig V., Zemanova M., Ruzek D., Palus M. Robust CXCL10/IP-10 and CCL5/RANTES production induced by tick-borne encephalitis virus in human brain pericytes despite weak infection. Int. J. Mol. Sci. 2024; 25:7892. PubMed PMC
Sinkkonen L., Hugenschmidt T., Filipowicz W., Svoboda P. Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One. 2010; 5:e12175. PubMed PMC
Toni L.S., Garcia A.M., Jeffrey D.A., Jiang X., Stauffer B.L., Miyamoto S.D., Sucharov C.C. Optimization of phenol-chloroform RNA extraction. MethodsX. 2018; 5:599–608. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17:10–12.
Bushnell B. BBMap short read aligner and other bioinformatics tools. 2015; https://sourceforge.net/projects/bbmap/.
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC
Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30:923–930. PubMed
Frankish A., Diekhans M., Ferreira A.M., Johnson R., Jungreis I., Loveland J., Mudge J.M., Sisu C., Wright J., Armstrong J. et al. . GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019; 47:D766–D773. PubMed PMC
Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47:D155–D162. PubMed PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Lindberg A.M., Stalhandske P.O., Pettersson U. Genome of coxsackievirus B3. Virology. 1987; 156:50–63. PubMed
Garmaroudi F.S., Marchant D., Hendry R., Luo H., Yang D., Ye X., Shi J., McManus B.M. Coxsackievirus B3 replication and pathogenesis. Future Microbiol. 2015; 10:629–653. PubMed
Carocci M., Bakkali-Kassimi L. The encephalomyocarditis virus. Virulence. 2012; 3:351–367. PubMed PMC
Kennedy E.M., Whisnant A.W., Kornepati A.V., Marshall J.B., Bogerd H.P., Cullen B.R. Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc. Natl Acad. Sci. U.S.A. 2015; 112:E6945-54. PubMed PMC
Laposova K., Pastorekova S., Tomaskova J. Lymphocytic choriomeningitis virus: invisible but not innocent. Acta Virol. 2013; 57:160–170. PubMed
Meyer B.J., Southern P.J. Concurrent sequence analysis of 5' and 3' RNA termini by intramolecular circularization reveals 5' nontemplated bases and 3' terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs. J. Virol. 1993; 67:2621–2627. PubMed PMC
Murchison E.P., Partridge J.F., Tam O.H., Cheloufi S., Hannon G.J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. U.S.A. 2005; 102:12135–12140. PubMed PMC
Grentzinger T., Oberlin S., Schott G., Handler D., Svozil J., Barragan-Borrero V., Humbert A., Duharcourt S., Brennecke J., Voinnet O. A universal method for the rapid isolation of all known classes of functional silencing small RNAs. Nucleic Acids Res. 2020; 48:e79. PubMed PMC
Svoboda P., Stein P., Schultz R.M. RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 2001; 287:1099–1104. PubMed
Miyazaki J., Takaki S., Araki K., Tashiro F., Tominaga A., Takatsu K., Yamamura K. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene. 1989; 79:269–277. PubMed
Okabe M., Ikawa M., Kominami K., Nakanishi T., Nishimune Y. Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997; 407:313–319. PubMed
Nejepinska J., Malik R., Filkowski J., Flemr M., Filipowicz W., Svoboda P. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res. 2012; 40:399–413. PubMed PMC
Bernstein E., Kim S.Y., Carmell M.A., Murchison E.P., Alcorn H., Li M.Z., Mills A.A., Elledge S.J., Anderson K.V., Hannon G.J. Dicer is essential for mouse development. Nat. Genet. 2003; 35:215–217. PubMed
Cheloufi S., Dos Santos C.O., Chong M.M., Hannon G.J. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010; 465:584–589. PubMed PMC
Srivastava B., Blazejewska P., Hessmann M., Bruder D., Geffers R., Mauel S., Gruber A.D., Schughart K. Host genetic background strongly influences the response to influenza a virus infections. PLoS One. 2009; 4:e4857. PubMed PMC
Montavon T.C., Baldaccini M., Lefevre M., Girardi E., Chane-Woon-Ming B., Messmer M., Hammann P., Chicher J., Pfeffer S. Human DICER helicase domain recruits PKR and modulates its antiviral activity. PLoS Pathog. 2021; 17:e1009549. PubMed PMC
Wilson R.C., Tambe A., Kidwell M.A., Noland C.L., Schneider C.P., Doudna J.A. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell. 2015; 57:397–407. PubMed PMC
Poirier E.Z., Buck M.D., Chakravarty P., Carvalho J., Frederico B., Cardoso A., Healy L., Ulferts R., Beale R., Reis e Sousa C. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science. 2021; 373:231–236. PubMed PMC
Taborska E., Pasulka J., Malik R., Horvat F., Jenickova I., Jelic Matosevic Z., Svoboda P. Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet. 2019; 15:e1008261. PubMed PMC
Liu Z., Wang J., Cheng H., Ke X., Sun L., Zhang Q.C., Wang H.W. Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate. Cell. 2018; 173:1191–1203. PubMed
Ameres S.L., Horwich M.D., Hung J.H., Xu J., Ghildiyal M., Weng Z., Zamore P.D. Target RNA-directed trimming and tailing of small silencing RNAs. Science. 2010; 328:1534–1539. PubMed PMC
Yun N.E., Seregin A.V., Walker D.H., Popov V.L., Walker A.G., Smith J.N., Miller M., de la Torre J.C., Smith J.K., Borisevich V. et al. . Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus. J. Virol. 2013; 87:10908–10911. PubMed PMC
Maillard P.V., Van der Veen A.G., Deddouche-Grass S., Rogers N.C., Merits A., Reis e Sousa C. Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J. 2016; 35:2505–2518. PubMed PMC