• This record comes from PubMed

Enhanced RNAi does not provide efficient innate antiviral immunity in mice

. 2025 Jan 07 ; 53 (1) : .

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
20-03950X Czech Science Foundation
European Research Council - International
647403 European Union's Horizon
Charles University
23-08039S Czech Science Foundation
LX22NPO5103 National Institute of Virology and Bacteriology
European Union-Next Generation EU
68378050 Czech Academy of Sciences
Ministry of Education
LM2023050 MEYS
ID:90254 e-INFRA CZ
90255 ELIXIR-CZ

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified the mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi and we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: coxsackievirus B3 and encephalomyocarditis virus from Picornaviridae; tick-borne encephalitis virus from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice did not elicit any antiviral effect, supporting an insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also observed that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.

In RNA interference (RNAi), the enzyme Dicer cuts long double-stranded RNA into small interfering RNAs that degrade matching RNAs. RNAi is a key antiviral defense in plants and invertebrates but vertebrates evolved a principally different antiviral defense. The authors genetically modified Dicer in mice to activate RNAi in mammals. These modified mice were tested against four RNA viruses but showed no significant antiviral response. However, further increased expression of modified Dicer did suppress one virus (lymphocytic choriomeningitis virus) in embryonic stem cells and in a transgenic mouse model, suggesting that some viruses might be sensitive to increased RNAi activity in mammals.

See more in PubMed

Fire  A., Xu  S., Montgomery  M.K., Kostas  S.A., Driver  S.E., Mello  C.C.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391:806–811. PubMed

Ketting  R.F.  The many faces of RNAi. Dev. Cell. 2011; 20:148–161. PubMed

Bartel  D.P.  Metazoan microRNAs. Cell. 2018; 173:20–51. PubMed PMC

Zapletal  D., Kubicek  K., Svoboda  P., Stefl  R.  Dicer structure and function: conserved and evolving features. EMBO Rep.  2023; 24:e57215. PubMed PMC

Zhang  H., Kolb  F.A., Brondani  V., Billy  E., Filipowicz  W.  Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J.  2002; 21:5875–5885. PubMed PMC

Zapletal  D., Taborska  E., Pasulka  J., Malik  R., Kubicek  K., Zanova  M., Much  C., Sebesta  M., Buccheri  V., Horvat  F.  et al. .  Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell. 2022; 82:4064–4079. PubMed PMC

Aderounmu  A.M., Aruscavage  P.J., Kolaczkowski  B., Bass  B.L.  Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife. 2023; 12:e85120. PubMed PMC

Ma  E., MacRae  I.J., Kirsch  J.F., Doudna  J.A.  Autoinhibition of human Dicer by its internal helicase domain. J. Mol. Biol.  2008; 380:237–243. PubMed PMC

Meister  G., Landthaler  M., Patkaniowska  A., Dorsett  Y., Teng  G., Tuschl  T.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 2004; 15:185–197. PubMed

Liu  J.D., Carmell  M.A., Rivas  F.V., Marsden  C.G., Thomson  J.M., Song  J.J., Hammond  S.M., Joshua-Tor  L., Hannon  G.J.  Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004; 305:1437–1441. PubMed

Song  J.J., Smith  S.K., Hannon  G.J., Joshua-Tor  L.  Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004; 305:1434–1437. PubMed

Chakravarthy  S., Sternberg  S.H., Kellenberger  C.A., Doudna  J.A.  Substrate-specific kinetics of Dicer-catalyzed RNA processing. J. Mol. Biol.  2010; 404:392–402. PubMed PMC

Demeter  T., Vaskovicova  M., Malik  R., Horvat  F., Pasulka  J., Svobodova  E., Flemr  M., Svoboda  P.  Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci. Alliance. 2019; 2:e201800289. PubMed PMC

Seo  G.J., Kincaid  R.P., Phanaksri  T., Burke  J.M., Pare  J.M., Cox  J.E., Hsiang  T.Y., Krug  R.M., Sullivan  C.S.  Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe. 2013; 14:435–445. PubMed PMC

van der Veen  A.G., Maillard  P.V., Schmidt  J.M., Lee  S.A., Deddouche-Grass  S., Borg  A., Kjaer  S., Snijders  A.P., Reis e Sousa  C.  The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J.  2018; 37:e97479. PubMed PMC

Takahashi  T., Nakano  Y., Onomoto  K., Yoneyama  M., Ui-Tei  K.  Virus sensor RIG-I represses RNA interference by interacting with TRBP through LGP2 in mammalian cells. Genes (Basel). 2018; 9:511. PubMed PMC

Flemr  M., Malik  R., Franke  V., Nejepinska  J., Sedlacek  R., Vlahovicek  K., Svoboda  P.  A retrotransposon-driven Dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013; 155:807–816. PubMed

Lu  R., Maduro  M., Li  F., Li  H.W., Broitman-Maduro  G., Li  W.X., Ding  S.W.  Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature. 2005; 436:1040–1043. PubMed PMC

Schott  D.H., Cureton  D.K., Whelan  S.P., Hunter  C.P.  An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc. Natl Acad. Sci. U.S.A.  2005; 102:18420–18424. PubMed PMC

Wilkins  C., Dishongh  R., Moore  S.C., Whitt  M.A., Chow  M., Machaca  K.  RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature. 2005; 436:1044–1047. PubMed

Felix  M.A., Ashe  A., Piffaretti  J., Wu  G., Nuez  I., Belicard  T., Jiang  Y., Zhao  G., Franz  C.J., Goldstein  L.D.  et al. .  Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol.  2011; 9:e1000586. PubMed PMC

Sarkies  P., Ashe  A., Le Pen  J., McKie  M.A., Miska  E.A.  Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res.  2013; 23:1258–1270. PubMed PMC

Saleh  M.C., Tassetto  M., van Rij  R.P., Goic  B., Gausson  V., Berry  B., Jacquier  C., Antoniewski  C., Andino  R.  Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature. 2009; 458:346–350. PubMed PMC

Tassetto  M., Kunitomi  M., Andino  R.  Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017; 169:314–325. PubMed PMC

Li  Y., Lu  J., Han  Y., Fan  X., Ding  S.W.  RNA interference functions as an antiviral immunity mechanism in mammals. Science. 2013; 342:231–234. PubMed PMC

Maillard  P.V., Ciaudo  C., Marchais  A., Li  Y., Jay  F., Ding  S.W., Voinnet  O.  Antiviral RNA interference in mammalian cells. Science. 2013; 342:235–238. PubMed PMC

Cullen  B.R., Cherry  S., tenOever  B.R.  Is RNA interference a physiologically relevant innate antiviral immune response in mammals?. Cell Host Microbe. 2013; 14:374–378. PubMed

Li  Y., Basavappa  M., Lu  J., Dong  S., Cronkite  D.A., Prior  J.T., Reinecker  H.C., Hertzog  P., Han  Y., Li  W.X.  et al. .  Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat. Microbiol.  2016; 2:16250. PubMed PMC

Qiu  Y., Xu  Y., Zhang  Y., Zhou  H., Deng  Y.Q., Li  X.F., Miao  M., Zhang  Q., Zhong  B., Hu  Y.  et al. .  Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity. 2017; 46:992–1004. PubMed

Fang  Y., Liu  Z., Qiu  Y., Kong  J., Fu  Y., Liu  Y., Wang  C., Quan  J., Wang  Q., Xu  W.  et al. .  Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity. 2021; 54:2231–2244. PubMed

Baldaccini  M., Gaucherand  L., Chane-Woon-Ming  B., Messmer  M., Gucciardi  F., Pfeffer  S.  The helicase domain of human Dicer prevents RNAi-independent activation of antiviral and inflammatory pathways. EMBO J.  2024; 43:806–835. PubMed PMC

Xu  Y.P., Qiu  Y., Zhang  B., Chen  G., Chen  Q., Wang  M., Mo  F., Xu  J., Wu  J., Zhang  R.R.  et al. .  Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res.  2019; 29:265–273. PubMed PMC

Zhang  Y., Dai  Y., Wang  J., Xu  Y., Li  Z., Lu  J., Xu  Y., Zhong  J., Ding  S.W., Li  Y.  Mouse circulating extracellular vesicles contain virus-derived siRNAs active in antiviral immunity. EMBO J.  2022; 41:e109902. PubMed PMC

Qiu  Y., Xu  Y.P., Wang  M., Miao  M., Zhou  H., Xu  J., Kong  J., Zheng  D., Li  R.T., Zhang  R.R.  et al. .  Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci. Adv.  2020; 6:eaax7989. PubMed PMC

Kakumani  P.K., Ponia  S.S., S  R.K., Sood  V., Chinnappan  M., Banerjea  A.C., Medigeshi  G.R., Malhotra  P., Mukherjee  S.K., Bhatnagar  R.K  Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J. Virol.  2013; 87:8870–8883. PubMed PMC

Han  Q., Chen  G., Wang  J., Jee  D., Li  W.X., Lai  E.C., Ding  S.W.  Mechanism and function of antiviral RNA interference in mice. mBio. 2020; 11:e03278-19. PubMed PMC

Bogerd  H.P., Skalsky  R.L., Kennedy  E.M., Furuse  Y., Whisnant  A.W., Flores  O., Schultz  K.L., Putnam  N., Barrows  N.J., Sherry  B.  et al. .  Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J. Virol.  2014; 88:8065–8076. PubMed PMC

Parameswaran  P., Sklan  E., Wilkins  C., Burgon  T., Samuel  M.A., Lu  R., Ansel  K.M., Heissmeyer  V., Einav  S., Jackson  W.  et al. .  Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog.  2010; 6:e1000764. PubMed PMC

Girardi  E., Chane-Woon-Ming  B., Messmer  M., Kaukinen  P., Pfeffer  S.  Identification of RNase L-dependent, 3'-end-modified, viral small RNAs in Sindbis virus-infected mammalian cells. mBio. 2013; 4:e00698-13. PubMed PMC

Girardi  E., Lefevre  M., Chane-Woon-Ming  B., Paro  S., Claydon  B., Imler  J.L., Meignin  C., Pfeffer  S.  Cross-species comparative analysis of Dicer proteins during Sindbis virus infection. Sci. Rep.  2015; 5:10693. PubMed PMC

Schuster  S., Overheul  G.J., Bauer  L., van Kuppeveld  F.J.M., van Rij  R.P.  No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Sci. Rep.  2019; 9:13752. PubMed PMC

Schuster  S., Tholen  L.E., Overheul  G.J., van Kuppeveld  F.J.M., van Rij  R.P.  Deletion of cytoplasmic double-stranded RNA sensors does not uncover viral small interfering RNA production in Human cells. mSphere. 2017; 2:e00333-17. PubMed PMC

Buccheri  V., Pasulka  J., Malik  R., Loubalova  Z., Taborska  E., Horvat  F., Roos Kulmann  M.I., Jenickova  I., Prochazka  J., Sedlacek  R.  et al. .  Functional canonical RNAi in mice expressing a truncated Dicer isoform and long dsRNA. EMBO Rep.  2024; 25:2896–2913. PubMed PMC

Taborska  E., Loubalova  Z., Kulmann  M.I.R., Malik  R., Buccheri  V., Pasulka  J., Horvat  F., Jenickova  I., Sedlacek  R., Svoboda  P.  Activated RNAi does not rescue piRNA pathway deficiency in testes. 2024; bioRxiv doi:4 July 2024, preprint: not peer reviewed10.1101/2024.07.04.602103. DOI

Schnettler  E., Tykalova  H., Watson  M., Sharma  M., Sterken  M.G., Obbard  D.J., Lewis  S.H., McFarlane  M., Bell-Sakyi  L., Barry  G.  et al. .  Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res.  2014; 42:9436–9446. PubMed PMC

Sanchez  A.B., Perez  M., Cornu  T., de la Torre  J.C.  RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol.  2005; 79:11071–11081. PubMed PMC

Agudelo  M., Palus  M., Keeffe  J.R., Bianchini  F., Svoboda  P., Salat  J., Peace  A., Gazumyan  A., Cipolla  M., Kapoor  T.  et al. .  Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J. Exp. Med.  2021; 218:e20210236. PubMed PMC

Pokorna Formanova  P., Palus  M., Salat  J., Honig  V., Stefanik  M., Svoboda  P., Ruzek  D.  Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflammation. 2019; 16:205. PubMed PMC

Horkova  V., Drobek  A., Paprckova  D., Niederlova  V., Prasai  A., Uleri  V., Glatzova  D., Kraller  M., Cesnekova  M., Janusova  S.  et al. .  Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat. Immunol.  2023; 24:174–185. PubMed PMC

Wang  C., Yue  F., Kuang  S.  Muscle histology characterization using H&E staining and Muscle Fiber type classification using immunofluorescence staining. Bio Protoc.  2017; 7:e2279. PubMed PMC

Hierholzer  E., Killington  R.A.. Mahy  B.W., Kangro  H.O.  Virus isolation and quantitation. Virology Methods Manual. 1996; San Diego: Academic Press; 25–46.

De Madrid  A.T., Porterfield  J.S.  A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ.  1969; 40:113–121. PubMed PMC

Pranclova  V., Honig  V., Zemanova  M., Ruzek  D., Palus  M.  Robust CXCL10/IP-10 and CCL5/RANTES production induced by tick-borne encephalitis virus in human brain pericytes despite weak infection. Int. J. Mol. Sci.  2024; 25:7892. PubMed PMC

Sinkkonen  L., Hugenschmidt  T., Filipowicz  W., Svoboda  P.  Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One. 2010; 5:e12175. PubMed PMC

Toni  L.S., Garcia  A.M., Jeffrey  D.A., Jiang  X., Stauffer  B.L., Miyamoto  S.D., Sucharov  C.C.  Optimization of phenol-chloroform RNA extraction. MethodsX. 2018; 5:599–608. PubMed PMC

Martin  M.  Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J.  2011; 17:10–12.

Bushnell  B.  BBMap short read aligner and other bioinformatics tools. 2015; https://sourceforge.net/projects/bbmap/.

Dobin  A., Davis  C.A., Schlesinger  F., Drenkow  J., Zaleski  C., Jha  S., Batut  P., Chaisson  M., Gingeras  T.R.  STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC

Liao  Y., Smyth  G.K., Shi  W.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30:923–930. PubMed

Frankish  A., Diekhans  M., Ferreira  A.M., Johnson  R., Jungreis  I., Loveland  J., Mudge  J.M., Sisu  C., Wright  J., Armstrong  J.  et al. .  GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res.  2019; 47:D766–D773. PubMed PMC

Kozomara  A., Birgaoanu  M., Griffiths-Jones  S.  miRBase: from microRNA sequences to function. Nucleic Acids Res.  2019; 47:D155–D162. PubMed PMC

Love  M.I., Huber  W., Anders  S.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.  2014; 15:550. PubMed PMC

Lindberg  A.M., Stalhandske  P.O., Pettersson  U.  Genome of coxsackievirus B3. Virology. 1987; 156:50–63. PubMed

Garmaroudi  F.S., Marchant  D., Hendry  R., Luo  H., Yang  D., Ye  X., Shi  J., McManus  B.M.  Coxsackievirus B3 replication and pathogenesis. Future Microbiol. 2015; 10:629–653. PubMed

Carocci  M., Bakkali-Kassimi  L.  The encephalomyocarditis virus. Virulence. 2012; 3:351–367. PubMed PMC

Kennedy  E.M., Whisnant  A.W., Kornepati  A.V., Marshall  J.B., Bogerd  H.P., Cullen  B.R.  Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc. Natl Acad. Sci. U.S.A.  2015; 112:E6945-54. PubMed PMC

Laposova  K., Pastorekova  S., Tomaskova  J.  Lymphocytic choriomeningitis virus: invisible but not innocent. Acta Virol.  2013; 57:160–170. PubMed

Meyer  B.J., Southern  P.J.  Concurrent sequence analysis of 5' and 3' RNA termini by intramolecular circularization reveals 5' nontemplated bases and 3' terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs. J. Virol.  1993; 67:2621–2627. PubMed PMC

Murchison  E.P., Partridge  J.F., Tam  O.H., Cheloufi  S., Hannon  G.J.  Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. U.S.A.  2005; 102:12135–12140. PubMed PMC

Grentzinger  T., Oberlin  S., Schott  G., Handler  D., Svozil  J., Barragan-Borrero  V., Humbert  A., Duharcourt  S., Brennecke  J., Voinnet  O.  A universal method for the rapid isolation of all known classes of functional silencing small RNAs. Nucleic Acids Res.  2020; 48:e79. PubMed PMC

Svoboda  P., Stein  P., Schultz  R.M.  RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun.  2001; 287:1099–1104. PubMed

Miyazaki  J., Takaki  S., Araki  K., Tashiro  F., Tominaga  A., Takatsu  K., Yamamura  K.  Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene. 1989; 79:269–277. PubMed

Okabe  M., Ikawa  M., Kominami  K., Nakanishi  T., Nishimune  Y.  Green mice’ as a source of ubiquitous green cells. FEBS Lett.  1997; 407:313–319. PubMed

Nejepinska  J., Malik  R., Filkowski  J., Flemr  M., Filipowicz  W., Svoboda  P.  dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res.  2012; 40:399–413. PubMed PMC

Bernstein  E., Kim  S.Y., Carmell  M.A., Murchison  E.P., Alcorn  H., Li  M.Z., Mills  A.A., Elledge  S.J., Anderson  K.V., Hannon  G.J.  Dicer is essential for mouse development. Nat. Genet.  2003; 35:215–217. PubMed

Cheloufi  S., Dos Santos  C.O., Chong  M.M., Hannon  G.J.  A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010; 465:584–589. PubMed PMC

Srivastava  B., Blazejewska  P., Hessmann  M., Bruder  D., Geffers  R., Mauel  S., Gruber  A.D., Schughart  K.  Host genetic background strongly influences the response to influenza a virus infections. PLoS One. 2009; 4:e4857. PubMed PMC

Montavon  T.C., Baldaccini  M., Lefevre  M., Girardi  E., Chane-Woon-Ming  B., Messmer  M., Hammann  P., Chicher  J., Pfeffer  S.  Human DICER helicase domain recruits PKR and modulates its antiviral activity. PLoS Pathog.  2021; 17:e1009549. PubMed PMC

Wilson  R.C., Tambe  A., Kidwell  M.A., Noland  C.L., Schneider  C.P., Doudna  J.A.  Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell. 2015; 57:397–407. PubMed PMC

Poirier  E.Z., Buck  M.D., Chakravarty  P., Carvalho  J., Frederico  B., Cardoso  A., Healy  L., Ulferts  R., Beale  R., Reis e Sousa  C.  An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science. 2021; 373:231–236. PubMed PMC

Taborska  E., Pasulka  J., Malik  R., Horvat  F., Jenickova  I., Jelic Matosevic  Z., Svoboda  P.  Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet.  2019; 15:e1008261. PubMed PMC

Liu  Z., Wang  J., Cheng  H., Ke  X., Sun  L., Zhang  Q.C., Wang  H.W.  Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate. Cell. 2018; 173:1191–1203. PubMed

Ameres  S.L., Horwich  M.D., Hung  J.H., Xu  J., Ghildiyal  M., Weng  Z., Zamore  P.D.  Target RNA-directed trimming and tailing of small silencing RNAs. Science. 2010; 328:1534–1539. PubMed PMC

Yun  N.E., Seregin  A.V., Walker  D.H., Popov  V.L., Walker  A.G., Smith  J.N., Miller  M., de la Torre  J.C., Smith  J.K., Borisevich  V.  et al. .  Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus. J. Virol.  2013; 87:10908–10911. PubMed PMC

Maillard  P.V., Van der Veen  A.G., Deddouche-Grass  S., Rogers  N.C., Merits  A., Reis e Sousa  C.  Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J.  2016; 35:2505–2518. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...