Virtual reality-based neuroproprioceptive physiotherapy in multiple sclerosis: a protocol for a double-arm randomised assessor-blinded controlled trial on upper extremity function, postural function and quality of life, with molecular and functional MRI assessment
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, protokol klinické studie
PubMed
39788766
PubMed Central
PMC11752059
DOI
10.1136/bmjopen-2024-088046
PII: bmjopen-2024-088046
Knihovny.cz E-zdroje
- Klíčová slova
- Functional Magnetic Resonance Imaging, IMMUNOLOGY, Multiple sclerosis, Neuroradiology, REHABILITATION MEDICINE, Virtual Reality,
- MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- horní končetina * patofyziologie MeSH
- kvalita života * MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- postura těla MeSH
- randomizované kontrolované studie jako téma MeSH
- roztroušená skleróza * diagnostické zobrazování MeSH
- síla ruky MeSH
- techniky fyzikální terapie * MeSH
- terapie pomocí virtuální reality metody MeSH
- virtuální realita MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- protokol klinické studie MeSH
INTRODUCTION: Upper limb (UL) impairment is common in people with multiple sclerosis (pwMS), and functional recovery of the UL is a key rehabilitation goal. Technology-based approaches, like virtual reality (VR), are increasingly promising. While most VR environments are task-oriented, our clinical approach integrates neuroproprioceptive 'facilitation and inhibition' (NFI) principles. To advance this, we developed immersive VR software based on NFI principles targeting UL function and sit-to-stand ability. This study aims to evaluate the effectiveness of this VR therapy compared with conventional NFI-based physical therapy in pwMS. Our study uniquely applies advanced imaging techniques, along with biological molecular assessments, to explore adaptive processes induced by VR rehabilitation. METHODS AND ANALYSIS: This double-arm, randomised, assessor-blinded, controlled trial runs over 2 months (1 hour, 2 times per week). PwMS with mild to severe disability will receive either VR therapy or real-world physical therapy. Primary outcomes include the nine-hole peg test, box and block test, handgrip strength, tremor and five times sit-to-stand test. Secondary measures include the Multiple Sclerosis Impact Scale, the 5-level EQ-5D questionnaire and kinematic analysis. Adaptive processes will be monitored using imaging techniques (functional MRI and tractography), molecular genetic methods (long non-coding RNAs) and immune system markers (leukocytes, dendritic cells). The International Classification of Functioning, Disability and Health brief set for MS will map the bio-psycho-social context of participants. ETHICS AND DISSEMINATION: This project and its amendments were approved by the Ethics Committee of the Institute for Clinical and Experimental Medicine and Thomayer Hospital (1983/21+4772/21 (G-21-02) and the Ethics Committee of Kralovske Vinohrady University Hospital (EK-VP/38/0/2021) in Prague, Czechia (with single enrolment). The findings of this project will be disseminated through scientific publications, conferences, professional networks, public engagement, educational materials and stakeholder briefings to ensure a broad impact across clinical, academic and public domains. TRIAL REGISTRATION NUMBER: clinicaltrials.gov (NCT04807738).
Department of Medical Genetics 3rd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
Faculty of Physical Education and Sport Charles University Prague Czech Republic
Institute of Clinical and Experimental Medicine Prague Czech Republic
Institute of Computer Science Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Johansson S, Ytterberg C, Claesson IM, et al. High concurrent presence of disability in multiple sclerosis. Associations with perceived health. J Neurol. 2007;254:767–73. doi: 10.1007/s00415-006-0431-5. PubMed DOI
Bertoni R, Lamers I, Chen CC, et al. Unilateral and bilateral upper limb dysfunction at body functions, activity and participation levels in people with multiple sclerosis. Mult Scler. 2015;21:1566–74. doi: 10.1177/1352458514567553. PubMed DOI
Buraga I, Davidescu I, Nica S, et al. Physical rehabilitation and quality of life in multiple sclerosis. Ro J Neurol. 2009;8:157–9. doi: 10.37897/RJN.2009.4.1. DOI
Spooren AIF, Timmermans AAA, Seelen HAM. Motor training programs of arm and hand in patients with MS according to different levels of the ICF: a systematic review. BMC Neurol. 2012;12:49. doi: 10.1186/1471-2377-12-49. PubMed DOI PMC
Chen J, Or CK, Chen T. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients With Stroke: Systematic Review and Meta-analysis of Randomized Controlled Trials. J Med Internet Res. 2022;24:e24111. doi: 10.2196/24111. PubMed DOI PMC
Feys P, Coninx K, Kerkhofs L, et al. Robot-supported upper limb training in a virtual learning environment: a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil. 2015;12:60. doi: 10.1186/s12984-015-0043-3. PubMed DOI PMC
Norouzi E, Gerber M, Pühse U, et al. Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis. Neuropsychol Rehabil. 2021;31:552–69. doi: 10.1080/09602011.2020.1715231. PubMed DOI
Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the adult damaged brain. J Commun Disord. 2011;44:538–48. doi: 10.1016/j.jcomdis.2011.04.011. PubMed DOI PMC
Chen J, Or CK, Li Z, et al. Effectiveness, safety and patients’ perceptions of an immersive virtual reality–based exercise system for poststroke upper limb motor rehabilitation: A proof-of-concept and feasibility randomized controlled trial. Dig Health. 2023;9 doi: 10.1177/20552076231203599. PubMed DOI PMC
Normand JM, Giannopoulos E, Spanlang B, et al. Multisensory stimulation can induce an illusion of larger belly size in immersive virtual reality. PLoS One. 2011;6:e16128. doi: 10.1371/journal.pone.0016128. PubMed DOI PMC
Calabrò RS, Naro A, Russo M, et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14:53. doi: 10.1186/s12984-017-0268-4. PubMed DOI PMC
Janssen J, Verschuren O, Renger WJ, et al. Gamification in Physical Therapy: More Than Using Games. Pediatr Phys Ther. 2017;29:95–9. doi: 10.1097/PEP.0000000000000326. PubMed DOI
Straudi S, Severini G, Sabbagh Charabati A, et al. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study. BMC Neurol. 2017;17:86. doi: 10.1186/s12883-017-0871-9. PubMed DOI PMC
Rasova K, Prochazkova M, Tintera J, et al. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study. Int J Rehabil Res. 2015;38:49–54. doi: 10.1097/MRR.0000000000000090. PubMed DOI
Keller J, Štětkářová I, Macri V, et al. Virtual reality-based treatment for regaining upper extremity function induces cortex grey matter changes in persons with acquired brain injury. J Neuroeng Rehabil. 2020;17:127. doi: 10.1186/s12984-020-00754-7. PubMed DOI PMC
Patel J, Fluet G, Qiu Q, et al. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: a feasibility study. J Neuroeng Rehabil. 2019;16:92. doi: 10.1186/s12984-019-0563-3. PubMed DOI PMC
You SH, Jang SH, Kim YH, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36:1166–71. doi: 10.1161/01.STR.0000162715.43417.91. PubMed DOI
Rasova K, Krasensky J, Havrdova E, et al. Is it possible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple sclerosis patients? A pilot project. Clin Rehabil. 2005;19:170–81. doi: 10.1191/0269215505cr831oa. PubMed DOI
Prochazkova M, Tintera J, Spanhelova S, et al. Brain activity changes following neuroproprioceptive 'facilitation, inhibition' physiotherapy in multiple sclerosis: a parallel group randomized comparison of two approaches. Eur J Phys Rehabil Med. 2021;57:356–65. doi: 10.23736/S1973-9087.20.06336-4. PubMed DOI
Angelova G, Skodova T, Prokopiusova T, et al. Ambulatory Neuroproprioceptive Facilitation and Inhibition Physical Therapy Improves Clinical Outcomes in Multiple Sclerosis and Modulates Serum Level of Neuroactive Steroids: A Two-Arm Parallel-Group Exploratory Trial. Life (Basel) 2020;10:1–16. doi: 10.3390/life10110267. PubMed DOI PMC
Bučková B, Kopal J, Řasová K, et al. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front Neurosci. 2021;15 doi: 10.3389/fnins.2021.662784. PubMed DOI PMC
Nociti V, Santoro M. What do we know about the role of lncRNAs in multiple sclerosis? Neural Regen Res. 2021;16:1715–22. doi: 10.4103/1673-5374.306061. PubMed DOI PMC
Ma P, Li Y, Zhang W, et al. Long Non-coding RNA MALAT1 Inhibits Neuron Apoptosis and Neuroinflammation While Stimulates Neurite Outgrowth and Its Correlation With MiR-125b Mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s Disease. Curr Alzheimer Res. 2019;16:596–612. doi: 10.2174/1567205016666190725130134. PubMed DOI
Meng J, Ding T, Chen Y, et al. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol. 2021;90:107141. doi: 10.1016/j.intimp.2020.107141. PubMed DOI
Wan P, Su W, Zhang Y, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. 2020;27:176–91. doi: 10.1038/s41418-019-0351-4. PubMed DOI PMC
Senousy MA, Shaker OG, Sayed NH, et al. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem Neurosci. 2020;11:1651–60. doi: 10.1021/acschemneuro.0c00150. PubMed DOI
O’Leary VB, Hain S, Maugg D, et al. Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci Rep. 2017;7 doi: 10.1038/s41598-017-01875-1. PubMed DOI PMC
Zhang X, Wang W, Zhu W, et al. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. IJMS. 2019;20 doi: 10.3390/ijms20225573. PubMed DOI PMC
Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 2015;87:15–24. doi: 10.1016/j.addr.2015.05.012. PubMed DOI PMC
Olerup O, Hillert J. HLA class II‐associated genetic susceptibility in multiple sclerosis: A critical evaluation. Tissue Antigens. 1991;38:1–15. doi: 10.1111/j.1399-0039.1991.tb02029.x. PubMed DOI
Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356 doi: 10.1126/science.aah4573. PubMed DOI PMC
Mancini VSBW, Di Pietro AA, Pasquini LA. Microglia depletion as a therapeutic strategy: friend or foe in multiple sclerosis models? Neural Regen Res. 2023;18:267–72. doi: 10.4103/1673-5374.346538. PubMed DOI PMC
Mundt S, Mrdjen D, Utz SG, et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci Immunol. 2019;4 doi: 10.1126/sciimmunol.aau8380. PubMed DOI
Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22:3–13. doi: 10.1111/ene.12798. PubMed DOI
Zang YCQ, Skinner SM, Robinson RR, et al. Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis. Mult Scler. 2004;10:499–506. doi: 10.1191/1352458504ms1081oa. PubMed DOI
Karni A, Abraham M, Monsonego A, et al. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J Immunol. 2006;177:4196–202. doi: 10.4049/jimmunol.177.6.4196. PubMed DOI
Champely S, Claus E, Jeffrey G, et al. Basic Functions for Power Analysis. 2020.
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4. PubMed DOI
Coenen M, Cieza A, Freeman J, et al. The development of ICF Core Sets for multiple sclerosis: results of the International Consensus Conference. J Neurol. 2011;258:1477–88. doi: 10.1007/s00415-011-5963-7. PubMed DOI
Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4 doi: 10.1186/1471-2288-4-26. PubMed DOI PMC
Řasová K, Bučková B, Prokopiusová T, et al. A Three-Arm Parallel-group Exploratory Trial documents balance improvement without much evidence of white matter integrity changes in people with multiple sclerosis following two months ambulatory neuroproprioceptive 'facilitation and inhibition' physical therapy. Eur J Phys Rehabil Med. 2021;57:889–99. doi: 10.23736/S1973-9087.21.06701-0. PubMed DOI
Adler SS, Beckers D, Buck M. PNF in Practice. Berlin, Heidelberg: 2014. PNF in practice .http://link.springer.com/10.1007/978-3-642-34988-1 Available. DOI
Cohen ET, Potter K, Allen DD, et al. Selecting Rehabilitation Outcome Measures for People with Multiple Sclerosis. Int J MS Care. 2015;17:181–9. doi: 10.7224/1537-2073.2014-067. PubMed DOI PMC
Hervault M, Balto JM, Hubbard EA, et al. Reliability, precision, and clinically important change of the Nine-Hole Peg Test in individuals with multiple sclerosis. Int J Rehabil Res. 2017;40:91–3. doi: 10.1097/MRR.0000000000000209. PubMed DOI
Rosti-Otajärvi E, Hämäläinen P, Koivisto K, et al. The reliability of the MSFC and its components. Acta Neurol Scand. 2008;117:421–7. doi: 10.1111/j.1600-0404.2007.00972.x. PubMed DOI
Jensen HB, Mamoei S, Ravnborg M, et al. Distribution-based estimates of minimum clinically important difference in cognition, arm function and lower body function after slow release-fampridine treatment of patients with multiple sclerosis. Mult Scler Relat Disord. 2016;7:58–60. doi: 10.1016/j.msard.2016.03.007. PubMed DOI
Solaro C, Di Giovanni R, Grange E, et al. Box and block test, hand grip strength and nine‐hole peg test: correlations between three upper limb objective measures in multiple sclerosis. Eur J Neurology. 2020;27:2523–30. doi: 10.1111/ene.14427. PubMed DOI
Solaro C, Di Giovanni R, Grange E, et al. Correlation between patient-reported manual ability and three objective measures of upper limb function in people with multiple sclerosis. Eur J Neurol. 2023;30:172–8. doi: 10.1111/ene.15560. PubMed DOI PMC
Mathiowetz V, Volland G, Kashman N, et al. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39:386–91. doi: 10.5014/ajot.39.6.386. PubMed DOI
Muñoz-Bermejo L, Adsuar JC, Mendoza-Muñoz M, et al. Test-Retest Reliability of Five Times Sit to Stand Test (FTSST) in Adults: A Systematic Review and Meta-Analysis. Biol (Basel) 2021;10:510. doi: 10.3390/biology10060510. PubMed DOI PMC
McGuigan C, Hutchinson M. The multiple sclerosis impact scale (MSIS-29) is a reliable and sensitive measure. J Neurol Neurosurg Psychiatry. 2004;75:266–9. PubMed PMC
Hobart J, Lamping D, Fitzpatrick R. The Multiple Sclerosis Impact Scale (MSIS-29): A new patient-based outcome measure. Brain (Bacau) 2001;124:962–73. doi: 10.1093/brain/124.5.962. PubMed DOI
Jongen PJ. Health-Related Quality of Life in Patients with Multiple Sclerosis: Impact of Disease-Modifying Drugs. CNS Drugs. 2017;31:585–602. doi: 10.1007/s40263-017-0444-x. PubMed DOI PMC
Visser LA, Louapre C, Uyl-de Groot CA, et al. Health-related quality of life of multiple sclerosis patients: a European multi-country study. Arch Public Health. 2021;79:1–12. doi: 10.1186/s13690-021-00561-z. PubMed DOI PMC
Spitzley KA, Karduna AR. Feasibility of using a fully immersive virtual reality system for kinematic data collection. 2019. PubMed DOI
Yeh FC, Zaydan IM, Suski VR, et al. Differential tractography as a track-based biomarker for neuronal injury. Neuroimage. 2019;202 doi: 10.1016/j.neuroimage.2019.116131. PubMed DOI PMC
R Core Team R: a language and environment for statistical computing. 2023.
Ovacik U, Tarakci E, Gungor F, et al. The minnesota manual dexterity test as a bimanual performance measure in people with multiple sclerosis. Mult Scler Relat Disord. 2022;64:103943. doi: 10.1016/j.msard.2022.103943. PubMed DOI
Cuesta-Gómez A, Martín-Díaz P, Sánchez-Herrera Baeza P, et al. Nintendo Switch Joy-Cons’ Infrared Motion Camera Sensor for Training Manual Dexterity in People with Multiple Sclerosis: A Randomized Controlled Trial. J Clin Med. 2022;11 doi: 10.3390/jcm11123261. PubMed DOI PMC
Doğan M, Ayvat E, Kılınç M. Telerehabilitation versus virtual reality supported task-oriented circuit therapy on upper limbs and trunk functions in patients with multiple sclerosis: A randomized controlled study. Mult Scler Relat Disord. 2023;71:104558. doi: 10.1016/j.msard.2023.104558. PubMed DOI
Marcos-Antón S, Jardón-Huete A, Oña-Simbaña ED, et al. sEMG-controlled forearm bracelet and serious game-based rehabilitation for training manual dexterity in people with multiple sclerosis: a randomised controlled trial. J Neuroeng Rehabil. 2023;20 doi: 10.1186/s12984-023-01233-5. PubMed DOI PMC
Feys P, Coninx K, Kerkhofs L, et al. Robot-supported upper limb training in a virtual learning environment: a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil. 2015;12 doi: 10.1186/s12984-015-0043-3. PubMed DOI PMC
Tavazzi E, Cazzoli M, Pirastru A, et al. Neuroplasticity and Motor Rehabilitation in Multiple Sclerosis: A Systematic Review on MRI Markers of Functional and Structural Changes. Front Neurosci. 2021;15 doi: 10.3389/fnins.2021.707675. PubMed DOI PMC
ClinicalTrials.gov
NCT04807738