Plasma Bacterial Metabolites in Crohn's Disease Pathogenesis and Complications

. 2024 Dec 28 ; 17 (1) : . [epub] 20241228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39796508

Grantová podpora
Funding: This work was supported by the Medical Pomeranian University in Szczecin. Funding: This work was supported by the Medical Pomeranian University in Szczecin.

BACKGROUND/OBJECTIVES: Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations. METHODS: The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease. CD patients (29) and healthy individuals (30) were recruited for this study. Bacterial metabolites (SCFAs and TMAO panel) were measured by a liquid chromatography-mass spectrometry system. RESULTS: A significant correlation (p-value < 0.05) between CD and bacterial metabolites was obtained for three of eight tested SCFAs; acetic acid (reduced in CD; FC 1.7; AUC = 0.714), butyric acid (increased; FC 0.68; AUC = 0.717), 2MeBA (FC 1.168; AUC = 0.702), and indoxyl (FC 0.624). The concentration of CA (FC 0.82) and choline (FC 0.78) in plasma was significantly disturbed according to the biological treatment. Choline level (FC 1.28) was also significantly disturbed in the patients treated with glucocorticoids. In total, 68.97% of Crohn's patients presented extraintestinal manifestations (EIMs) of Crohn's disease, mainly osteoarticular complications. The level of BA was statistically significantly elevated in patients with extraintestinal (FC 0.602) manifestations, while in the group of patients with osteoarticular complications, a significant difference in the level of betaine (FC 1.647) was observed. CONCLUSIONS: The analyzed bacterial metabolites of plasma may significantly help in the diagnostic process, and in the monitoring of the disease course and treatment, in a lowly invasive way, as biomarkers after additional research on a larger group of patients.

Zobrazit více v PubMed

Montrose J.A., Kurada S., Fischer M. Current and future microbiome-based therapies in inflammatory bowel disease. Curr. Opin. Gastroenterol. 2024;40:258–267. doi: 10.1097/MOG.0000000000001027. PubMed DOI

Paidimarri S.P., Ayuthu S., Chauhan Y.D., Bittla P., Mirza A.A., Saad M.Z., Khan S. Contribution of the Gut Microbiome to the Perpetuation of Inflammation in Crohn’s Disease: A Systematic Review. Cureus. 2024;16:e67672. doi: 10.7759/cureus.67672. PubMed DOI PMC

Zheng J., Sun Q., Zhang M., Liu C., Su Q., Zhang L., Xu Z., Lu W., Ching J., Tang W., et al. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease. Nat. Med. 2024;30:3555–3567. doi: 10.1038/s41591-024-03280-4. PubMed DOI PMC

Sun M., Du B., Shi Y., Lu Y., Zhou Y., Liu B. Combined Signature of the Fecal Microbiome and Plasma Metabolome in Patients with Ulcerative Colitis. Med. Sci. Monit. 2019;25:3303–3315. doi: 10.12659/MSM.916009. PubMed DOI PMC

Lavelle A., Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020;17:223–237. doi: 10.1038/s41575-019-0258-z. PubMed DOI

Andrzejewska M., Dereziński P., Kokot Z., Grzymisławski M. Metabolomics and proteomics in the diagnosis of inflammatory bowel dis-eases. Forum Zaburzeń Metab. 2016;7:141–151.

De Preter V. Metabolomics in the clinical diagnosis of inflammatory bowel disease. Dig. Dis. 2015;33((Suppl. S1)):2–10. doi: 10.1159/000437033. PubMed DOI

Xu P., Lv T., Dong S., Cui Z., Luo X., Jia B., Jeon C., Zhang J. Association between intestinal microbiome and inflammatory bowel disease: Insights from bib-liometric analysis. Comput. Struct. Biotechnol. J. 2022;20:1716–1725. doi: 10.1016/j.csbj.2022.04.006. PubMed DOI PMC

De Freitas Lins Neto M., Ximenes Verdi G., de Oliveria Veras A., Veras M.D.O., Caetano L.C., Ursulino J.S. Use of metabolomics to the diagnosis of inflammatory bowel disease. Arq. Gastroenterol. 2020;57:311–315. doi: 10.1590/s0004-2803.202000000-57. PubMed DOI

Qiu S., Cai Y., Yao H., Lin C., Xie Y., Tang S., Zhang A. Small molecule metabolites: Discovery of biomarkers and thera-peutic targets. Signal Transduct. Target. Ther. 2023;8:132. doi: 10.1038/s41392-023-01399-3. PubMed DOI PMC

Kim K., Lee Y., Chae W., Cho J.Y. An improved method to quantify short-chain fatty acids in biological samples using gas chromatography-mass spectrometry. Metabolites. 2022;12:525. doi: 10.3390/metabo12060525. PubMed DOI PMC

Kul S., Caliskan Z., Guvenc T.S., Celik F.B., Sarmis A., Atici A., Konal O., Akıl M., Cumen A.S., Bilgic N.M., et al. Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to endothelial and coronary microvascular function in patients with inflammatory bowel disease. Microvasc. Res. 2022;146:104458. doi: 10.1016/j.mvr.2022.104458. PubMed DOI

Papa A., Santini P., De Lucia S.S., Maresca R., Porfidia A., Pignatelli P., Gasbarrini A., Violi F., Pola R. Gut dysbiosis-related thrombosis in inflammatory bowel disease: Potential disease mechanisms and emerging therapeutic strategies. Thromb. Res. 2023;232:77–88. doi: 10.1016/j.thromres.2023.11.005. PubMed DOI

Laryushina Y., Samoilova-Bedych N., Turgunova L., Kozhakhmetov S., Alina A., Suieubayev M., Mukhanbetzhanov N. Alterations of the Gut Microbiome and TMAO Levels in Patients with Ulcerative Colitis. J. Clin. Med. 2024;13:5794. doi: 10.3390/jcm13195794. PubMed DOI PMC

Ferrer M., Buey B., Grasa L., Mesonero J.E., Latorre E. Protective role of short-chain fatty acids on intestinal oxidative stress induced by TNF-α. Cell Stress Chaperon- 2024;29:769–776. doi: 10.1016/j.cstres.2024.11.002. PubMed DOI PMC

Fu Y., Lyu J., Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front. Immunol. 2023;14:1277102. doi: 10.3389/fimmu.2023.1277102. PubMed DOI PMC

Yang S., Shang J., Liu L., Tang Z., Meng X. Strains producing different short-chain fatty acids alleviate DSS-induced ulcerative colitis by regulating intestinal microecology. Food Funct. 2022;13:12156–12169. doi: 10.1039/D2FO01577C. PubMed DOI

Onyszkiewicz M., Gawrys-Kopczynska M., Konopelski P., Aleksandrowicz M., Sawicka A., Koźniewska E., Samborowska E., Ufnal M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon–vagus nerve signaling and GPR41/43 receptors. Pflugers Arch. 2019;471:1441–1453. doi: 10.1007/s00424-019-02322-y. PubMed DOI PMC

Maksymiuk K.M., Szudzik M., Gawryś-Kopczyńska M., Onyszkiewicz M., Samborowska E., Mogilnicka I., Ufnal M. Trimethylamine, a gut bacteria metabolite and air pollutant, increases blood pressure and markers of kidney damage including proteinuria and KIM-1 in rats. J. Transl. Med. 2022;20:470. doi: 10.1186/s12967-022-03687-y. PubMed DOI PMC

Kolho K.-L., Pessia A., Jaakkola T., de Vos W.M., Velagapudi V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J. Crohn’s Colitis. 2016;11:321–334. doi: 10.1093/ecco-jcc/jjw158. PubMed DOI

Jaworska K., Konop M., Bielinska K., Hutsch T., Dziekiewicz M., Banaszkiewicz A., Ufnal M. Inflammatory bowel disease is associated with increased gut-to-blood penetration of short-chain fatty acids: A new, non-invasive marker of a functional intestinal lesion. Exp. Physiol. 2019;104:1226–1236. doi: 10.1113/EP087773. PubMed DOI

Jagt J.Z., Verburgt C.M., de Vries R., de Boer N.K.H., Benninga M.A., de Jonge W.J., van Limbergen J.E., de Meij T.G.J. Faecal metabolomics in paediatric inflammatory bowel disease: A systematic review. J. Crohn’s Colitis. 2022;16:1777–1790. doi: 10.1093/ecco-jcc/jjac079. PubMed DOI PMC

Ostrowski J., Kulecka M., Zawada I., Żeber-Lubecka N., Paziewska A., Graca-Pakulska K., Dąbkowski K., Skubisz K., Cybula P., Ambrożkiewicz F., et al. The gastric microbiota in patients with Crohn’s disease; a preliminary study. Sci. Rep. 2021;11:17866. doi: 10.1038/s41598-021-97261-z. PubMed DOI PMC

Svolos V., Hansen R., Nichols B., Quince C., Ijaz U.Z., Papadopoulou R.T., Edwards C.A., Watson D., Alghamdi A., Brejnrod A., et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology. 2019;156:1354–1367.e6. doi: 10.1053/j.gastro.2018.12.002. PubMed DOI

Dąbek-Drobny A., Kaczmarczyk O., Woźniakiewicz M., Paśko P., Dobrowolska-Iwanek J., Woźniakiewicz A., Piątek-Guziewicz A., Zagrodzki P., Zwolińska-Wcisło M. Association between fecal short-chain fatty acid levels, diet, and body mass index in patients with inflammatory bowel disease. Biology. 2022;11:108. doi: 10.3390/biology11010108. PubMed DOI PMC

Ambrozkiewicz F., Karczmarski J., Kulecka M., Paziewska A., Niemira M., Zeber-Lubecka N., Zagorowicz E., Kretowski A., Ostrowski J. In search for interplay between stool microRNAs, microbiota and short chain fatty acids in Crohn disease—A preliminary study. BMC Gastroenterol. 2020;20:307. doi: 10.1186/s12876-020-01444-3. PubMed DOI PMC

Marques J.G., Shokry E., Frivolt K., Werkstetter K.J., Brückner A., Schwerd T., Koletzko S., Koletzko B. Metabolomic signatures in pediatric Crohn’s disease patients with mild or qui-escent disease treated with partial enteral nutrition: A feasibility study. SLAS Technol. 2021;26:165–177. doi: 10.1177/2472630320969147. PubMed DOI PMC

Colgan S.P., Wang R.X., Hall C.H.T., Bhagavatula G., Lee J.S. Revisiting the "starved gut" hypothesis in inflammatory bowel disease. Immunome-tabolism. 2023;5:e0016. doi: 10.1097/IN9.0000000000000016. PubMed DOI PMC

Smith S.A., Ogawa S.A., Chau L., Whelan K.A., Hamilton K.E., Chen J., Tan L., Chen E.Z., Keilbaugh S., Fogt F., et al. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Investig. 2021;131:e133371. doi: 10.1172/JCI133371. PubMed DOI PMC

Russo E., Giudici F., Fiorindi C., Ficari F., Scaringi S., Amedei A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019;22:2754. doi: 10.3389/fimmu.2019.02754. PubMed DOI PMC

Niccolai E., Boem F., Russo E., Amedei A. The gut–brain axis in the neuropsychological disease model of obesity: A classical movie revised by the emerging director “microbiome”. Nutrients. 2019;11:156. doi: 10.3390/nu11010156. PubMed DOI PMC

Säemann M.D., Böhmig G.A., Österreicher C.H., Burtscher H., Parolini O., Diakos C., Stöckl J., Hörl W.H., Zlabinger G.J. Anti-inflammatory effects of sodium butyrate on human monocytes: Potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2382. doi: 10.1096/fj.00-0359fje. PubMed DOI

Eder P. The utility of biomarkers in the assessment of the inflammatory bowel disease activity—Practical issues. Gastroen-Terologia Klin. 2018;10:52–63.

Ghiboub M., Penny S., Verburgt C.M., Boneh R.S., Wine E., Cohen A., Dunn K.A., Pinto D.M., Benninga M.A., de Jonge W.J., et al. Metabolome changes with diet-induced remission in pediatric crohn’s disease. Gastroenterology. 2022;163:922–936.e15. doi: 10.1053/j.gastro.2022.05.050. PubMed DOI

Osaki H., Jodai Y., Koyama K., Omori T., Horiguchi N., Kamano T., Funasaka K., Nagasaka M., Nakagawa Y., Shibata T., et al. Clinical response and changes in the fecal microbiota and metabolite levels after fecal microbiota transplantation in patients with inflammatory bowel disease and recurrent Clostridioides difficile infection. Fujita Med. J. 2021;7:87–98. doi: 10.20407/fmj.2020-021. PubMed DOI PMC

Kaczmarczyk O., Dąbek-Drobny A., Woźniakiewicz M., Paśko P., Dobrowolska-Iwanek J., Woźniakiewicz A., Piątek-Guziewicz A., Zagrodzki P., Mach T., Zwolińska-Wcisło M. Fecal levels of lactic, succinic and short-chain fatty acids in patients with ulcerative colitis and crohn disease: A pilot study. J. Clin. Med. 2021;10:4701. doi: 10.3390/jcm10204701. PubMed DOI PMC

Rogler G., Singh A., Kavanaugh A., Rubin D.T. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management. Gastroenterology. 2021;161:1118–1132. doi: 10.1053/j.gastro.2021.07.042. PubMed DOI PMC

Chen L., Liu D., Mao M., Liu W., Wang Y., Liang Y., Cao W., Zhong X. Betaine ameliorates acute sever ulcerative colitis by inhibiting oxidative stress induced inflammatory pyroptosis. Mol. Nutr. Food Res. 2022;66:e2200341. doi: 10.1002/mnfr.202200341. PubMed DOI

Zhao N., Yang Y., Chen C., Jing T., Hu Y., Xu H., Wang S., He Y., Liu E., Cui J. Betaine supplementation alleviates dextran sulfate sodium-induced colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota. Food Funct. 2022;13:12814–12826. doi: 10.1039/D2FO02942A. PubMed DOI

Gallagher K., Catesson A., Griffin J.L., Holmes E., Williams H.R.T. Metabolomic analysis in inflammatory bowel disease: A systematic review. J. Crohn’s Colitis. 2021;15:813–826. doi: 10.1093/ecco-jcc/jjaa227. PubMed DOI

Liu H., Xu M., He Q., Wei P., Ke M., Liu S. Untargeted serum metabolomics reveals specific metabolite abnormalities in patients with Crohn’s disease. Front. Med. 2022;9:814839. doi: 10.3389/fmed.2022.814839. PubMed DOI PMC

Limketkai B.N., Hamideh M., Shah R., Sauk J.S., Jaffe N. Dietary Patterns and Their Association With Symptoms Activity in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2022;28:1627–1636. doi: 10.1093/ibd/izab335. PubMed DOI

Hashash J.G., Elkins J., Lewis J.D., Binion D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology. 2024;166:521–532. doi: 10.1053/j.gastro.2023.11.303. PubMed DOI

Sasson A.N., Ananthakrishnan A.N., Raman M. Diet in Treatment of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2021;19:425–435.e3. doi: 10.1016/j.cgh.2019.11.054. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...