Plasma Bacterial Metabolites in Crohn's Disease Pathogenesis and Complications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Funding: This work was supported by the Medical Pomeranian University in Szczecin.
Funding: This work was supported by the Medical Pomeranian University in Szczecin.
PubMed
39796508
PubMed Central
PMC11722665
DOI
10.3390/nu17010074
PII: nu17010074
Knihovny.cz E-zdroje
- Klíčová slova
- Crohn’s disease, SCFA, TMAO, gut microbiome, inflammatory bowel diseases, metabolites, metabolome,
- MeSH
- Bacteria * metabolismus MeSH
- biologické markery krev MeSH
- cholin krev MeSH
- Crohnova nemoc * krev mikrobiologie komplikace MeSH
- dospělí MeSH
- dysbióza MeSH
- indican krev MeSH
- kyseliny mastné těkavé krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- methylaminy krev MeSH
- mladý dospělý MeSH
- střevní mikroflóra * MeSH
- studie případů a kontrol MeSH
- vápník krev MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- cholin MeSH
- indican MeSH
- kyseliny mastné těkavé MeSH
- methylaminy MeSH
- trimethyloxamine MeSH Prohlížeč
- vápník MeSH
BACKGROUND/OBJECTIVES: Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations. METHODS: The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease. CD patients (29) and healthy individuals (30) were recruited for this study. Bacterial metabolites (SCFAs and TMAO panel) were measured by a liquid chromatography-mass spectrometry system. RESULTS: A significant correlation (p-value < 0.05) between CD and bacterial metabolites was obtained for three of eight tested SCFAs; acetic acid (reduced in CD; FC 1.7; AUC = 0.714), butyric acid (increased; FC 0.68; AUC = 0.717), 2MeBA (FC 1.168; AUC = 0.702), and indoxyl (FC 0.624). The concentration of CA (FC 0.82) and choline (FC 0.78) in plasma was significantly disturbed according to the biological treatment. Choline level (FC 1.28) was also significantly disturbed in the patients treated with glucocorticoids. In total, 68.97% of Crohn's patients presented extraintestinal manifestations (EIMs) of Crohn's disease, mainly osteoarticular complications. The level of BA was statistically significantly elevated in patients with extraintestinal (FC 0.602) manifestations, while in the group of patients with osteoarticular complications, a significant difference in the level of betaine (FC 1.647) was observed. CONCLUSIONS: The analyzed bacterial metabolites of plasma may significantly help in the diagnostic process, and in the monitoring of the disease course and treatment, in a lowly invasive way, as biomarkers after additional research on a larger group of patients.
Institute of Biological Sciences University of Siedlce Prusa 14 08 110 Siedlce Poland
Institute of Medical Sciences University of Zielona Góra ul Zyty 28 65 046 Zielona Gora Poland
Zobrazit více v PubMed
Montrose J.A., Kurada S., Fischer M. Current and future microbiome-based therapies in inflammatory bowel disease. Curr. Opin. Gastroenterol. 2024;40:258–267. doi: 10.1097/MOG.0000000000001027. PubMed DOI
Paidimarri S.P., Ayuthu S., Chauhan Y.D., Bittla P., Mirza A.A., Saad M.Z., Khan S. Contribution of the Gut Microbiome to the Perpetuation of Inflammation in Crohn’s Disease: A Systematic Review. Cureus. 2024;16:e67672. doi: 10.7759/cureus.67672. PubMed DOI PMC
Zheng J., Sun Q., Zhang M., Liu C., Su Q., Zhang L., Xu Z., Lu W., Ching J., Tang W., et al. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease. Nat. Med. 2024;30:3555–3567. doi: 10.1038/s41591-024-03280-4. PubMed DOI PMC
Sun M., Du B., Shi Y., Lu Y., Zhou Y., Liu B. Combined Signature of the Fecal Microbiome and Plasma Metabolome in Patients with Ulcerative Colitis. Med. Sci. Monit. 2019;25:3303–3315. doi: 10.12659/MSM.916009. PubMed DOI PMC
Lavelle A., Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020;17:223–237. doi: 10.1038/s41575-019-0258-z. PubMed DOI
Andrzejewska M., Dereziński P., Kokot Z., Grzymisławski M. Metabolomics and proteomics in the diagnosis of inflammatory bowel dis-eases. Forum Zaburzeń Metab. 2016;7:141–151.
De Preter V. Metabolomics in the clinical diagnosis of inflammatory bowel disease. Dig. Dis. 2015;33((Suppl. S1)):2–10. doi: 10.1159/000437033. PubMed DOI
Xu P., Lv T., Dong S., Cui Z., Luo X., Jia B., Jeon C., Zhang J. Association between intestinal microbiome and inflammatory bowel disease: Insights from bib-liometric analysis. Comput. Struct. Biotechnol. J. 2022;20:1716–1725. doi: 10.1016/j.csbj.2022.04.006. PubMed DOI PMC
De Freitas Lins Neto M., Ximenes Verdi G., de Oliveria Veras A., Veras M.D.O., Caetano L.C., Ursulino J.S. Use of metabolomics to the diagnosis of inflammatory bowel disease. Arq. Gastroenterol. 2020;57:311–315. doi: 10.1590/s0004-2803.202000000-57. PubMed DOI
Qiu S., Cai Y., Yao H., Lin C., Xie Y., Tang S., Zhang A. Small molecule metabolites: Discovery of biomarkers and thera-peutic targets. Signal Transduct. Target. Ther. 2023;8:132. doi: 10.1038/s41392-023-01399-3. PubMed DOI PMC
Kim K., Lee Y., Chae W., Cho J.Y. An improved method to quantify short-chain fatty acids in biological samples using gas chromatography-mass spectrometry. Metabolites. 2022;12:525. doi: 10.3390/metabo12060525. PubMed DOI PMC
Kul S., Caliskan Z., Guvenc T.S., Celik F.B., Sarmis A., Atici A., Konal O., Akıl M., Cumen A.S., Bilgic N.M., et al. Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to endothelial and coronary microvascular function in patients with inflammatory bowel disease. Microvasc. Res. 2022;146:104458. doi: 10.1016/j.mvr.2022.104458. PubMed DOI
Papa A., Santini P., De Lucia S.S., Maresca R., Porfidia A., Pignatelli P., Gasbarrini A., Violi F., Pola R. Gut dysbiosis-related thrombosis in inflammatory bowel disease: Potential disease mechanisms and emerging therapeutic strategies. Thromb. Res. 2023;232:77–88. doi: 10.1016/j.thromres.2023.11.005. PubMed DOI
Laryushina Y., Samoilova-Bedych N., Turgunova L., Kozhakhmetov S., Alina A., Suieubayev M., Mukhanbetzhanov N. Alterations of the Gut Microbiome and TMAO Levels in Patients with Ulcerative Colitis. J. Clin. Med. 2024;13:5794. doi: 10.3390/jcm13195794. PubMed DOI PMC
Ferrer M., Buey B., Grasa L., Mesonero J.E., Latorre E. Protective role of short-chain fatty acids on intestinal oxidative stress induced by TNF-α. Cell Stress Chaperon- 2024;29:769–776. doi: 10.1016/j.cstres.2024.11.002. PubMed DOI PMC
Fu Y., Lyu J., Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front. Immunol. 2023;14:1277102. doi: 10.3389/fimmu.2023.1277102. PubMed DOI PMC
Yang S., Shang J., Liu L., Tang Z., Meng X. Strains producing different short-chain fatty acids alleviate DSS-induced ulcerative colitis by regulating intestinal microecology. Food Funct. 2022;13:12156–12169. doi: 10.1039/D2FO01577C. PubMed DOI
Onyszkiewicz M., Gawrys-Kopczynska M., Konopelski P., Aleksandrowicz M., Sawicka A., Koźniewska E., Samborowska E., Ufnal M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon–vagus nerve signaling and GPR41/43 receptors. Pflugers Arch. 2019;471:1441–1453. doi: 10.1007/s00424-019-02322-y. PubMed DOI PMC
Maksymiuk K.M., Szudzik M., Gawryś-Kopczyńska M., Onyszkiewicz M., Samborowska E., Mogilnicka I., Ufnal M. Trimethylamine, a gut bacteria metabolite and air pollutant, increases blood pressure and markers of kidney damage including proteinuria and KIM-1 in rats. J. Transl. Med. 2022;20:470. doi: 10.1186/s12967-022-03687-y. PubMed DOI PMC
Kolho K.-L., Pessia A., Jaakkola T., de Vos W.M., Velagapudi V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J. Crohn’s Colitis. 2016;11:321–334. doi: 10.1093/ecco-jcc/jjw158. PubMed DOI
Jaworska K., Konop M., Bielinska K., Hutsch T., Dziekiewicz M., Banaszkiewicz A., Ufnal M. Inflammatory bowel disease is associated with increased gut-to-blood penetration of short-chain fatty acids: A new, non-invasive marker of a functional intestinal lesion. Exp. Physiol. 2019;104:1226–1236. doi: 10.1113/EP087773. PubMed DOI
Jagt J.Z., Verburgt C.M., de Vries R., de Boer N.K.H., Benninga M.A., de Jonge W.J., van Limbergen J.E., de Meij T.G.J. Faecal metabolomics in paediatric inflammatory bowel disease: A systematic review. J. Crohn’s Colitis. 2022;16:1777–1790. doi: 10.1093/ecco-jcc/jjac079. PubMed DOI PMC
Ostrowski J., Kulecka M., Zawada I., Żeber-Lubecka N., Paziewska A., Graca-Pakulska K., Dąbkowski K., Skubisz K., Cybula P., Ambrożkiewicz F., et al. The gastric microbiota in patients with Crohn’s disease; a preliminary study. Sci. Rep. 2021;11:17866. doi: 10.1038/s41598-021-97261-z. PubMed DOI PMC
Svolos V., Hansen R., Nichols B., Quince C., Ijaz U.Z., Papadopoulou R.T., Edwards C.A., Watson D., Alghamdi A., Brejnrod A., et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology. 2019;156:1354–1367.e6. doi: 10.1053/j.gastro.2018.12.002. PubMed DOI
Dąbek-Drobny A., Kaczmarczyk O., Woźniakiewicz M., Paśko P., Dobrowolska-Iwanek J., Woźniakiewicz A., Piątek-Guziewicz A., Zagrodzki P., Zwolińska-Wcisło M. Association between fecal short-chain fatty acid levels, diet, and body mass index in patients with inflammatory bowel disease. Biology. 2022;11:108. doi: 10.3390/biology11010108. PubMed DOI PMC
Ambrozkiewicz F., Karczmarski J., Kulecka M., Paziewska A., Niemira M., Zeber-Lubecka N., Zagorowicz E., Kretowski A., Ostrowski J. In search for interplay between stool microRNAs, microbiota and short chain fatty acids in Crohn disease—A preliminary study. BMC Gastroenterol. 2020;20:307. doi: 10.1186/s12876-020-01444-3. PubMed DOI PMC
Marques J.G., Shokry E., Frivolt K., Werkstetter K.J., Brückner A., Schwerd T., Koletzko S., Koletzko B. Metabolomic signatures in pediatric Crohn’s disease patients with mild or qui-escent disease treated with partial enteral nutrition: A feasibility study. SLAS Technol. 2021;26:165–177. doi: 10.1177/2472630320969147. PubMed DOI PMC
Colgan S.P., Wang R.X., Hall C.H.T., Bhagavatula G., Lee J.S. Revisiting the "starved gut" hypothesis in inflammatory bowel disease. Immunome-tabolism. 2023;5:e0016. doi: 10.1097/IN9.0000000000000016. PubMed DOI PMC
Smith S.A., Ogawa S.A., Chau L., Whelan K.A., Hamilton K.E., Chen J., Tan L., Chen E.Z., Keilbaugh S., Fogt F., et al. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Investig. 2021;131:e133371. doi: 10.1172/JCI133371. PubMed DOI PMC
Russo E., Giudici F., Fiorindi C., Ficari F., Scaringi S., Amedei A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019;22:2754. doi: 10.3389/fimmu.2019.02754. PubMed DOI PMC
Niccolai E., Boem F., Russo E., Amedei A. The gut–brain axis in the neuropsychological disease model of obesity: A classical movie revised by the emerging director “microbiome”. Nutrients. 2019;11:156. doi: 10.3390/nu11010156. PubMed DOI PMC
Säemann M.D., Böhmig G.A., Österreicher C.H., Burtscher H., Parolini O., Diakos C., Stöckl J., Hörl W.H., Zlabinger G.J. Anti-inflammatory effects of sodium butyrate on human monocytes: Potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2382. doi: 10.1096/fj.00-0359fje. PubMed DOI
Eder P. The utility of biomarkers in the assessment of the inflammatory bowel disease activity—Practical issues. Gastroen-Terologia Klin. 2018;10:52–63.
Ghiboub M., Penny S., Verburgt C.M., Boneh R.S., Wine E., Cohen A., Dunn K.A., Pinto D.M., Benninga M.A., de Jonge W.J., et al. Metabolome changes with diet-induced remission in pediatric crohn’s disease. Gastroenterology. 2022;163:922–936.e15. doi: 10.1053/j.gastro.2022.05.050. PubMed DOI
Osaki H., Jodai Y., Koyama K., Omori T., Horiguchi N., Kamano T., Funasaka K., Nagasaka M., Nakagawa Y., Shibata T., et al. Clinical response and changes in the fecal microbiota and metabolite levels after fecal microbiota transplantation in patients with inflammatory bowel disease and recurrent Clostridioides difficile infection. Fujita Med. J. 2021;7:87–98. doi: 10.20407/fmj.2020-021. PubMed DOI PMC
Kaczmarczyk O., Dąbek-Drobny A., Woźniakiewicz M., Paśko P., Dobrowolska-Iwanek J., Woźniakiewicz A., Piątek-Guziewicz A., Zagrodzki P., Mach T., Zwolińska-Wcisło M. Fecal levels of lactic, succinic and short-chain fatty acids in patients with ulcerative colitis and crohn disease: A pilot study. J. Clin. Med. 2021;10:4701. doi: 10.3390/jcm10204701. PubMed DOI PMC
Rogler G., Singh A., Kavanaugh A., Rubin D.T. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management. Gastroenterology. 2021;161:1118–1132. doi: 10.1053/j.gastro.2021.07.042. PubMed DOI PMC
Chen L., Liu D., Mao M., Liu W., Wang Y., Liang Y., Cao W., Zhong X. Betaine ameliorates acute sever ulcerative colitis by inhibiting oxidative stress induced inflammatory pyroptosis. Mol. Nutr. Food Res. 2022;66:e2200341. doi: 10.1002/mnfr.202200341. PubMed DOI
Zhao N., Yang Y., Chen C., Jing T., Hu Y., Xu H., Wang S., He Y., Liu E., Cui J. Betaine supplementation alleviates dextran sulfate sodium-induced colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota. Food Funct. 2022;13:12814–12826. doi: 10.1039/D2FO02942A. PubMed DOI
Gallagher K., Catesson A., Griffin J.L., Holmes E., Williams H.R.T. Metabolomic analysis in inflammatory bowel disease: A systematic review. J. Crohn’s Colitis. 2021;15:813–826. doi: 10.1093/ecco-jcc/jjaa227. PubMed DOI
Liu H., Xu M., He Q., Wei P., Ke M., Liu S. Untargeted serum metabolomics reveals specific metabolite abnormalities in patients with Crohn’s disease. Front. Med. 2022;9:814839. doi: 10.3389/fmed.2022.814839. PubMed DOI PMC
Limketkai B.N., Hamideh M., Shah R., Sauk J.S., Jaffe N. Dietary Patterns and Their Association With Symptoms Activity in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2022;28:1627–1636. doi: 10.1093/ibd/izab335. PubMed DOI
Hashash J.G., Elkins J., Lewis J.D., Binion D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology. 2024;166:521–532. doi: 10.1053/j.gastro.2023.11.303. PubMed DOI
Sasson A.N., Ananthakrishnan A.N., Raman M. Diet in Treatment of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2021;19:425–435.e3. doi: 10.1016/j.cgh.2019.11.054. PubMed DOI