The genetic origin of the Indo-Europeans
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, historické články
Grantová podpora
Howard Hughes Medical Institute - United States
R01 HG012287
NHGRI NIH HHS - United States
PubMed
39910300
PubMed Central
PMC11922553
DOI
10.1038/s41586-024-08531-5
PII: 10.1038/s41586-024-08531-5
Knihovny.cz E-zdroje
- MeSH
- běloši * genetika MeSH
- dějiny starověku MeSH
- etnicita genetika dějiny MeSH
- Evropané MeSH
- lidé MeSH
- migrace lidstva * dějiny MeSH
- mitochondriální DNA genetika MeSH
- populační genetika MeSH
- starobylá DNA * analýza MeSH
- tok genů * MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Názvy látek
- mitochondriální DNA MeSH
- starobylá DNA * MeSH
The Yamnaya archaeological complex appeared around 3300 BC across the steppes north of the Black and Caspian Seas, and by 3000 BC it reached its maximal extent, ranging from Hungary in the west to Kazakhstan in the east. To localize Yamnaya origins among the preceding Eneolithic people, we assembled ancient DNA from 435 individuals, demonstrating three genetic clines. A Caucasus-lower Volga (CLV) cline suffused with Caucasus hunter-gatherer1 ancestry extended between a Caucasus Neolithic southern end and a northern end at Berezhnovka along the lower Volga river. Bidirectional gene flow created intermediate populations, such as the north Caucasus Maikop people, and those at Remontnoye on the steppe. The Volga cline was formed as CLV people mixed with upriver populations of Eastern hunter-gatherer2 ancestry, creating hypervariable groups, including one at Khvalynsk. The Dnipro cline was formed when CLV people moved west, mixing with people with Ukraine Neolithic hunter-gatherer ancestry3 along the Dnipro and Don rivers to establish Serednii Stih groups, from whom Yamnaya ancestors formed around 4000 BC and grew rapidly after 3750-3350 BC. The CLV people contributed around four-fifths of the ancestry of the Yamnaya and, entering Anatolia, probably from the east, at least one-tenth of the ancestry of Bronze Age central Anatolians, who spoke Hittite4,5. We therefore propose that the final unity of the speakers of 'proto-Indo-Anatolian', the language ancestral to both Anatolian and Indo-European people, occurred in CLV people some time between 4400 BC and 4000 BC.
5 F Voino Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Russia
Azov History Archaeology and Palaeontology Museum Reserve Azov Russia
Broad Institute of Harvard and MIT Cambridge MA USA
Centre for Applied Bioanthropology Institute for Anthropological Research Zagreb Croatia
Damjanich János Museum Szolnok Hungary
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Archaeology and Heritage Faculty of Humanities University of Primorska Koper Slovenia
Department of Archaeology Ethnography and Museology Altai State University Barnaul Russia
Department of Archaeology State History Museum Moscow Russia
Department of Archaeology University of Szeged Szeged Hungary
Department of Biological Anthropology Institute of Biology Eötvös Loránd University Budapest Hungary
Department of Biological Anthropology Institute of Biology University of Szeged Szeged Hungary
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Department of Genetics Harvard Medical School Boston MA USA
Department of Geography Faculty of Humanities University Valahia of Târgoviște Târgovişte Romania
Department of History of the Institute of Humanities Ural Federal University Ekaterinburg Russia
Department of Human Evolutionary Biology Harvard University Cambridge MA USA
Department of Statistics University of Oxford Oxford UK
Faculty of History University of Oxford Oxford UK
Fr 1 Rainer Institute of Anthropology University of Bucharest Bucharest Romania
Gavrilă Simion Eco Museum Research Institute Tulcea Romania
Hartwick College Department of Anthropology Oneonta NY USA
Howard Hughes Medical Institute Harvard Medical School Boston MA USA
Human Evolution and Archaeological Sciences University of Vienna Vienna Austria
Ikerbasque Basque Foundation of Science Bilbao Spain
Independent researcher Philadelphia PA USA
Institute for the History of Material Culture Russian Academy of Sciences St Petersburg Russia
Institute of Archaeogenomics HUN REN Research Centre for the Humanities Budapest Hungary
Institute of Archaeology HUN REN Research Centre for the Humanities Budapest Hungary
Institute of Archaeology named after A Kh Margulan Almaty Kazakhstan
Institute of Archeology named after A Kh Khalikov Tatarstan Academy of Sciences Kazan Russia
Institute of Ethnology and Anthropology Russian Academy of Sciences Moscow Russia
Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
Kalmyk Scientific Centre of the Russian Academy of Sciences Elista Russia
Laboratory of Ancient and Medieval Archaeology of Eurasia Altai State University Barnaul Russia
Museo delle Civiltà Italian Ministry of Culture Rome Italy
Museum of Vojvodina Novi Sad Serbia
National Agency for Archaeology Chișinău Republic of Moldova
National Research Tomsk State University Tomsk Russia
Olga Necrasov Centre for Anthropological Research Romanian Academy Iași Branch Iași Romania
Prahova County Museum of History and Archaeology Ploiești Romania
Research Institute and Museum of Anthropology Moscow Russia
Research Institute GAUK RO Don Heritage Rostov on Don Russia
Samara State University of Social Sciences and Education Samara Russia
School of Archaeology University College Dublin Dublin Ireland
Slovak National Museum Archaeological Museum Bratislava Slovak Republic
Slovak National Museum Natural History Museum Bratislava Slovak Republic
Wellcome Centre for Human Genetics University of Oxford Oxford UK
Zobrazit více v PubMed
Jones ER et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat Commun 6, 8912, doi:10.1038/ncomms9912 (2015). PubMed DOI PMC
Haak W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211, doi:10.1038/nature14317 (2015). PubMed DOI PMC
Mathieson I. et al. The genomic history of southeastern Europe. Nature 555, 197–203, doi:10.1038/nature25778 (2018). PubMed DOI PMC
Kloekhorst A. in The Indo-European Puzzle Revisited: Integrating Archaeology, Genetics, and Linguistics (eds Eske Willerslev, Guus Kroonen, & Kristian Kristiansen) 42–60 (Cambridge University Press, 2023).
Kroonen G, Barjamovic G. & Peyrot M. Linguistic supplement to Damgaard et al. 2018 : Early Indo-European languages, Anatolian, Tocharian and Indo-Iranian. (2018). <https://zenodo.org/doi/10.5281/zenodo.1240523>. DOI
Anthony DW The horse, the wheel, and language : how bronze-age riders from the Eurasian steppes shaped the modern world. (Princeton University Press, 2007).
Olalde I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196, doi:10.1038/nature25738 (2018). PubMed DOI PMC
Narasimhan Vagheesh M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487, doi:10.1126/science.aat7487 (2019). PubMed DOI PMC
Wang C-C et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nature Communications 10, 590, doi:10.1038/s41467-018-08220-8 (2019). PubMed DOI PMC
Lazaridis I. et al. The genetic history of the Southern Arc: A bridge between West Asia and Europe. Science 377, eabm4247, doi:10.1126/science.abm4247 (2022). PubMed DOI PMC
Allentoft ME et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311, doi:10.1038/s41586-023-06865-0 (2024). PubMed DOI PMC
Allentoft ME et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172, doi:10.1038/nature14507 (2015). PubMed DOI
Lazaridis I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424, doi:10.1038/nature19310 (2016). PubMed DOI PMC
Lazaridis I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982–987, doi:10.1126/science.abq0762 (2022). PubMed DOI PMC
Skourtanioti E. et al. Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175 e1128, doi:10.1016/j.cell.2020.04.044 (2020). PubMed DOI
Lazaridis I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413, doi:10.1038/nature13673 (2014). PubMed DOI PMC
Nikitin AG, Lazaridis I. & others. A genomic history of the North Pontic Region from the Neolithic to the Bronze Age. In submission (2024). PubMed PMC
Reich D. et al. Reconstructing Native American population history. Nature 488, 370–374, doi:10.1038/nature11258 (2012). PubMed DOI PMC
Tian Chen Z. et al. Postglacial genomes from foragers across Northern Eurasia reveal prehistoric mobility associated with the spread of the Uralic and Yeniseian languages. bioRxiv, 2023.2010.2001.560332, doi:10.1101/2023.10.01.560332 (2023). DOI
Posth C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126, doi:10.1038/s41586-023-05726-0 (2023). PubMed DOI PMC
Vybornov A. et al. Diet and Chronology of Neolithic-Eneolithic Cultures (from 6500 to 4700 cal BC) in the Lower Volga Basin. Radiocarbon 60, 1597–1610, doi:10.1017/RDC.2018.95 (2018). DOI
Gimbutas M. The prehistory of eastern Europe. (Peabody Museum, 1956).
Fu Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205, doi:10.1038/nature17993 (2016). PubMed DOI PMC
Anthony DW et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehistorische Zeitschrift 97, 22–67, doi:doi:10.1515/pz-2022-2034 (2022). PubMed DOI PMC
Penske S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358–365, doi:10.1038/s41586-023-06334-8 (2023). PubMed DOI PMC
Nikitin AGIS, Culleton BJ; Potekhina I; Reich D. New radiocarbon and stable isotope data from the Usatove culture site of Mayaky in Ukraine. SSRN Electronic Journal, doi:doi:10.2139/ssrn.4236123 (2023). DOI
Nikitin AG et al. A genomic history of the North Pontic Region from the Neolithic to the Bronze Age. bioRxiv, 2024.2004.2017.589600, doi:10.1101/2024.04.17.589600 (2024). PubMed DOI PMC
Govedarica B. & Manzura I. The Giurgiulesti cemetery in chronological and cultural context of Southeastern and Eastern Europe. Eurasia Antiqua 22, 1–39 (2016).
Skorobogatov AM Pamyatniki Neolita I Eneolita v Usťe Chernoi Kalitvy. Trudy Voronezhskogo Oblastnogo Kraevedcheskogo Muzeiya Vyp. 3, 47–53 (2019).
Skorobogatov AM & Smol'janinov RV Srednestogovskie materialy v bassejne Verhnego i Srednego Dona. Rossiyskaya arkheologiya 2013, 126–136 (2013).
Shishlina NI et al. Paleoecology, Subsistence, and 14C Chronology of the Eurasian Caspian Steppe Bronze Age. Radiocarbon 51, 481–499, doi:10.1017/S0033822200055879 (2009). DOI
Korenevskii S. Rozhdenie Kurgana [Origins of Kurgans] (2012).
Zhur KV et al. Human DNA from the oldest Eneolithic cemetery in Nalchik points the spread of farming from the Caucasus to the Eastern European steppes. iScience, doi:10.1016/j.isci.2024.110963. PubMed DOI PMC
de Barros Damgaard P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, doi:10.1126/science.aar7711 (2018). PubMed DOI PMC
Altınışık NE et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition. Science Advances 8, eabo3609, doi:10.1126/sciadv.abo3609. PubMed DOI PMC
Lazaridis I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218, doi:10.1038/nature23310 (2017). PubMed DOI PMC
Skourtanioti E. et al. Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175.e1128, doi:10.1016/j.cell.2020.04.044 (2020). PubMed DOI
Lazaridis I. The evolutionary history of human populations in Europe. Current Opinion in Genetics & Development 53, 21–27, doi:10.1016/j.gde.2018.06.007 (2018). PubMed DOI
Kassian AS et al. Rapid radiation of the inner Indo-European languages: an advanced approach to Indo-European lexicostatistics. Linguistics 59, 949–979, doi:doi:10.1515/ling-2020-0060 (2021). DOI
Yaka R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, doi:10.1016/j.cub.2021.03.050 (2021). PubMed DOI PMC
Egfjord AF-H et al. Genomic Steppe ancestry in skeletons from the Neolithic Single Grave Culture in Denmark. PLOS ONE 16, e0244872, doi:10.1371/journal.pone.0244872 (2021). PubMed DOI PMC
Mathieson I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503, doi:10.1038/nature16152 (2015). PubMed DOI PMC
Chintalapati M, Patterson N. & Moorjani P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625, doi:10.7554/eLife.77625 (2022). PubMed DOI PMC
Ringbauer H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nature Genetics 56, 143–151, doi:10.1038/s41588-023-01582-w (2024). PubMed DOI PMC
Fournier R, Tsangalidou Z, Reich D. & Palamara PF Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nature Communications 14, 7945, doi:10.1038/s41467-023-43522-6 (2023). PubMed DOI PMC
Fowler C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587, doi:10.1038/s41586-021-04241-4 (2022). PubMed DOI PMC
Shishlina N. Reconstruction of the Bronze Age of the Caspian steppes: Life styles and life ways of pastoral nomads. Vol. 1876 (Archaeopress, 2008).
Olander T. Indo-European cladistic nomenclature. 124, 231–244, doi:doi:10.1515/if-2019-0008 (2019). DOI
Anthony DW & Ringe D. The Indo-European Homeland from Linguistic and Archaeological Perspectives. Annual Review of Linguistics 1, 199–219, doi:10.1146/annurev-linguist-030514-124812 (2015). DOI
Pronk TC Indo-European secondary products terminology and the dating of Proto-Indo-Anatolian. Journal of Indo-European Studies 49, 141–170 (2022).
Ringe D, Warnow T. & Taylor A. Indo-European and Computational Cladistics. Transactions of the Philological Society 100, 59–129, doi:10.1111/1467-968X.00091 (2002). DOI
Saag L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Science Advances 7, eabd6535, doi:10.1126/sciadv.abd6535 (2021). PubMed DOI PMC
Kroonen G, Jakob A, Palmér AI, van Sluis P. & Wigman A. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages. PLOS ONE 17, e0275744, doi:10.1371/journal.pone.0275744 (2022). PubMed DOI PMC
Kristiansen K. in Dispersals and Diversification: Linguistic and Archaeological Perspectives on the Early Stages of Indo-European Vol. 19 Brill's Studies in Indo-European Languages & Linguistics (eds Serangeli M. & Thomas Olander) 157–165 (Brill, 2019).
Cassidy LM et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388, doi:10.1038/s41586-020-2378-6 (2020). PubMed DOI PMC
Järve M. et al. Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Current Biology 29, 2430–2441.e2410, doi:10.1016/j.cub.2019.06.019 (2019). PubMed DOI
Jeong C. et al. A Dynamic 6,000-Year Genetic History of Eurasia's Eastern Steppe. Cell 183, 890–904.e829, doi:10.1016/j.cell.2020.10.015 (2020). PubMed DOI PMC
Kumar V. et al. Bronze and Iron Age population movements underlie Xinjiang population history. Science 376, 62–69, doi:10.1126/science.abk1534 (2022). PubMed DOI
Patterson N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594, doi:10.1038/s41586-021-04287-4 (2022). PubMed DOI PMC
Olalde I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230, doi:10.1126/science.aav4040 (2019). PubMed DOI PMC
Zhang F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256–261, doi:10.1038/s41586-021-04052-7 (2021). PubMed DOI PMC
Wang C-C et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419, doi:10.1038/s41586-021-03336-2 (2021). PubMed DOI PMC
Gelabert P. et al. Genomes from Verteba cave suggest diversity within the Trypillians in Ukraine. Scientific Reports 12, 7242, doi:10.1038/s41598-022-11117-8 (2022). PubMed DOI PMC
Mattila TM et al. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Communications Biology 6, 793, doi:10.1038/s42003-023-05131-3 (2023). PubMed DOI PMC
Pinhasi R, Fernandes DM, Sirak K. & Cheronet O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc 14, 1194–1205, doi:10.1038/s41596-019-0137-7 (2019). PubMed DOI
Sirak KA et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62, 283–289, doi:10.2144/000114558 (2017). PubMed DOI
Damgaard PB et al. Improving access to endogenous DNA in ancient bones and teeth. Sci Rep 5, 11184, doi:10.1038/srep11184 (2015). PubMed DOI PMC
Sirak K. et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome research 30, 427–436, doi:10.1101/gr.260141.119 (2020). PubMed DOI PMC
Dabney J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A 110, 15758–15763, doi:10.1073/pnas.1314445110 (2013). PubMed DOI PMC
Korlević P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93, doi:10.2144/000114320 (2015). PubMed DOI
Rohland N, Harney E, Mallick S, Nordenfelt S. & Reich D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos Trans R Soc Lond B Biol Sci 370, 20130624, doi:10.1098/rstb.2013.0624 (2015). PubMed DOI PMC
Rohland N, Glocke I, Aximu-Petri A. & Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat Protoc 13, 2447–2461, doi:10.1038/s41596-018-0050-5 (2018). PubMed DOI
Prendergast ME et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, doi:10.1126/science.aaw6275 (2019). PubMed DOI PMC
Gansauge MT, Aximu-Petri A, Nagel S. & Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat Protoc 15, 2279–2300, doi:10.1038/s41596-020-0338-0 (2020). PubMed DOI
Maricic T, Whitten M. & Paabo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One 5, e14004, doi:10.1371/journal.pone.0014004 (2010). PubMed DOI PMC
Fu Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci U S A 110, 2223–2227, doi:10.1073/pnas.1221359110 (2013). PubMed DOI PMC
Fu Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219, doi:10.1038/nature14558 (2015). PubMed DOI PMC
Rohland N. et al. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Res 32, 2068–2078, doi:10.1101/gr.276728.122 (2022). PubMed DOI PMC
Lipson M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372, doi:10.1038/nature24476 (2017). PubMed DOI PMC
Behar DM et al. A "Copernican" reassessment of the human mitochondrial DNA tree from its root. Am J Hum Genet 90, 675–684, doi:10.1016/j.ajhg.2012.03.002 (2012). PubMed DOI PMC
Li H. & Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760, doi:10.1093/bioinformatics/btp324 (2009). PubMed DOI PMC
Fu Q. et al. A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology 23, 553–559, doi:10.1016/j.cub.2013.02.044 (2013). PubMed DOI PMC
Korneliussen TS, Albrechtsen A. & Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356, doi:10.1186/s12859-014-0356-4 (2014). PubMed DOI PMC
Skoglund P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences 111, 2229, doi:10.1073/pnas.1318934111 (2014). PubMed DOI PMC
Li H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, doi:10.1093/bioinformatics/btp352 (2009). PubMed DOI PMC
Weissensteiner H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44, W58–63, doi:10.1093/nar/gkw233 (2016). PubMed DOI PMC
van Oven M. & Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation 30, E386–E394, doi:10.1002/humu.20921 (2009). PubMed DOI
Patterson N, Price AL & Reich D. Population Structure and Eigenanalysis. PLOS Genetics 2, e190, doi:10.1371/journal.pgen.0020190 (2006). PubMed DOI PMC
Shinde V. et al. An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers. Cell 179, doi:10.1016/j.cell.2019.08.048 (2019). PubMed DOI PMC
Harney É et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nature Communications 9, 3336, doi:10.1038/s41467-018-05649-9 (2018). PubMed DOI PMC
Rivollat M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Science Advances 6, eaaz5344, doi:10.1126/sciadv.aaz5344 (2020). PubMed DOI PMC
Reich D, Thangaraj K, Patterson N, Price AL & Singh L. Reconstructing Indian population history. Nature 461, 489–494, doi:10.1038/nature08365 (2009). PubMed DOI PMC
Massicotte P. & South A. rnaturalearth: World Map Data from Natural Earth. (2024). <https://docs.ropensci.org/rnaturalearth/>.
Adamov D, Gurianov VM, Karzhavin S, Tagankin V. & Urasin V. Defining a New Rate Constant for Y-Chromosome SNPs based on Full Sequencing Data. Russian Journal of Genetic Genealogy 7, 1920–2997 (2015).
Sinnott RW Virtues of the Haversine. Sky and telescope 68, 158 (1984).
Charlesworth B. Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10, 195–205, doi:10.1038/nrg2526 (2009). PubMed DOI
Fenner JN Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am J Phys Anthropol 128, 415–423, doi:10.1002/ajpa.20188 (2005). PubMed DOI