• This record comes from PubMed

Antimicrobial peptides selectively target malaria parasites by a cholesterol-dependent mechanism

. 2025 Feb 17 ; 301 (4) : 108298. [epub] 20250217

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 39971158
PubMed Central PMC11993164
DOI 10.1016/j.jbc.2025.108298
PII: S0021-9258(25)00146-2
Knihovny.cz E-resources

Hundreds of thousands die annually from malaria caused by Plasmodium falciparum (Pf), with the emergence of drug-resistant parasites hindering eradication efforts. Antimicrobial peptides (AMPs) are known for their ability to disrupt pathogen membranes without targeting specific receptors, thereby reducing the chance of drug resistance. However, their effectiveness and the biophysical mechanisms by which they target the intracellular parasite remain unexplored. Here, by using native and synthetic AMPs, we discovered a selective mechanism that underlies the antimalarial activity. Remarkably, the AMPs exclusively interact with Pf-infected red blood cells, disrupting the cytoskeletal network and reaching the enclosed parasites with correlation to their activity. Moreover, we showed that the unique feature of reduced cholesterol content in the membrane of the infected host makes Pf-infected red blood cells susceptible to AMPs. Overall, this work highlights the Achilles' heel of malaria parasite and demonstrates the power of AMPs as potential antimalarial drugs with reduced risk of resistance.

See more in PubMed

World Health Organization . World Health Organization; Geneva: 2022. World malaria report 2022.

Menard D., Dondorp A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect. Med. 2017;7:1–24. PubMed PMC

Sinha S., Medhi B., Sehgal R. Challenges of drug-resistant malaria. Parasite. 2014;21:61. PubMed PMC

Phillips M.A., Burrows J.N., Manyando C., Van Huijsduijnen R.H., Van Voorhis W.C., Wells T.N.C. Malaria. Nat. Rev. Dis. Primers. 2017;3 PubMed

Wagner M.P., Formaglio P., Gorgette O., Dziekan J.M., Huon C., Berneburg I., et al. Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep. 2022;39 PubMed

Vale N., Moreira R., Gomes P. Primaquine revisited six decades after its discovery. Eur. J. Med. Chem. 2009;44:937–953. PubMed

Rossi L.M., Rangasamy P., Zhang J., Qiu X.Q., Wu G.Y. Research advances in the development of peptide antibiotics. J. Pharm. Sci. 2008;97:1060–1070. PubMed

Mangoni M.L., Mcdermott A.M., Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp. Dermatol. 2016;25:167–173. PubMed PMC

Biswaro L.S., Sousa M.G. da C., Rezende T.M.B., Dias S.C., Franco O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. Microbiol. 2018;9:855. PubMed PMC

Oren Z., Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers. 1998;47:451–463. PubMed

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. PubMed

Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers - Pept. Sci. Section. 2002;66:236–248. PubMed

Brender J.R., McHenry A.J., Ramamoorthy A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front. Immunol. 2012;3:195. PubMed PMC

Papo N., Oren Z., Pag U., Sahl H.G., Shai Y. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J. Biol. Chem. 2002;277:33913–33921. PubMed

Ben Hur D., Kapach G., Wani N.A., Kiper E., Ashkenazi M., Smollan G., et al. Antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa biofilm from cystic fibrosis patients. J. Med. Chem. 2022;65:9050–9062. PubMed PMC

Wani N.A., Ben Hur D., Kapach G., Stolovicki E., Rotem E., Shai Y. Switching bond: generation of new antimicrobial peptides via the incorporation of an intramolecular isopeptide bond. ACS Infect. Dis. 2021;7:1702–1712. PubMed PMC

Wani N.A., Stolovicki E., Hur D.B., Shai Y. Site-specific isopeptide bond formation: a powerful tool for the generation of potent and nontoxic antimicrobial peptides. J. Med. Chem. 2022;65:5085–5094. PubMed PMC

Hallock K.J., Lee D.K., Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 2003;84:3052–3060. PubMed PMC

Chennupati S.K., Chiu A.G., Tamashiro E., Banks C.A., Cohen M.B., Bleier B.S., et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am. J. Rhinol Allergy. 2009;23:46–51. PubMed

Lofton H., Pränting M., Thulin E., Andersson D.I. Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS One. 2013;8 PubMed PMC

Yang L., Harroun T.A., Weiss T.M., Ding L., Huang H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001;81:1475–1485. PubMed PMC

Braunstein A., Papo N., Shai Y. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob. Agents Chemother. 2004;48:3127–3129. PubMed PMC

Papo N., Braunstein A., Eshhar Z., Shai Y. Suppression of human prostate tumor growth in mice by a cytolytic D-, L-amino Acid Peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res. 2004;64:5779–5786. PubMed

Dekel E., Yaffe D., Rosenhek-Goldian I., Ben-Nissan G., Ofir-Birin Y., Morandi M.I., et al. 20S proteasomes secreted by the malaria parasite promote its growth. Nat. Commun. 2021;12:1–19. PubMed PMC

Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. PubMed PMC

Papo N., Shai Y. A molecular mechanism for lipopolysaccharide protection of gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005;280:10378–10387. PubMed

Segev-Zarko L., Saar-Dover R., Brumfeld V., Mangoni M.L., Shai Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 2015;468:259–270. PubMed

Kutner S., Ginsburg H., Cabantchik Z.I. Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. J. Cell Physiol. 1983;114:245–251. PubMed

Mauritz J.M.A., Esposito A., Ginsburg H., Kaminski C.F., Tiffert T., Lew V.L. The homeostasis of Plasmodium falciparum-infected red blood cells. PLoS Comput. Biol. 2009;5 PubMed PMC

Paulitschke M., Nash G.B. Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum. J. Lab. Clin. Med. 1993;122:581–589. PubMed

Saar-Dover R., Ashkenazi A., Shai Y. Peptide interaction with and insertion into membranes. Methods Mol. Biol. 2013;1033:173–183. PubMed

Shprung T., Wani N.A., Wilmes M., Mangoni M.L., Bitler A., Shimoni E., et al. Opposing effects of PhoPQ and PmrAB on the properties of Salmonella enterica serovar typhimurium: implications on resistance to antimicrobial peptides. Biochemistry. 2021;60:2943–2955. PubMed PMC

Kapach G., Nuri R., Schmidt C., Danin A., Ferrera S., Savidor A., et al. Loss of the periplasmic chaperone skp and mutations in the efflux pump AcrAB-TolC play a role in acquired resistance to antimicrobial peptides in Salmonella typhimurium. Front. Microbiol. 2020;11:189. PubMed PMC

Overhage J., Campisano A., Bains M., Torfs E.C.W., Rehm B.H.A., Hancock R.E.W. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 2008;76:4176–4182. PubMed PMC

Oren Z., Lerman J.C., Gudmundsson G.H., Agerberth B., Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 1999;341(Pt 3):501–513. PubMed PMC

Camacho A.C., Kiper E., Oren S., Zaharoni N., Nir N., Soffer N., et al. High - throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors. 2023;16:14. PubMed PMC

Love M.S., Millholland M.G., Mishra S., Kulkarni S., Katie B., Pan W., et al. Platelet factor 4 activity against P. Falciparum and its translation to nonpeptidic mimics as antimalarials. Cell Host. Microbe. 2013;12:815–823. PubMed PMC

Ribaut C., Berry A., Chevalley S., Reybier K., Morlais I., Parzy D., et al. Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species. Malar. J. 2008;7:45. PubMed PMC

Amaro M., Filipe H.A.L., Prates Ramalho J.P., Hof M., Loura L.M.S. Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Phys. Chem. Chem. Phys. 2016;18:7042–7054. PubMed

Shmuel-Galia L., Klug Y., Porat Z., Charni M., Zarmi B., Shai Y. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. J. Biol. Chem. 2017;292:13415–13427. PubMed PMC

Papo N., Shahar M., Eisenbach L., Shai Y. A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J. Biol. Chem. 2003;278:21018–21023. PubMed

Cohen H., Wani N.A., Ben Hur D., Migliolo L., Cardoso M.H., Porat Z., et al. Interaction of pexiganan (MSI-78)-Derived analogues reduces inflammation and TLR4-mediated cytokine secretion: a comparative study. ACS Omega. 2023;8:17856–17868. PubMed PMC

Flammersfeld A., Lang C., Flieger A., Pradel G. Phospholipases during membrane dynamics in malaria parasites. Int. J. Med. Microbiol. 2018;308:129–141. PubMed

Jackson K.E., Klonis N., Ferguson D.J.P., Adisa A., Dogovski C., Tilley L. Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol. Microbiol. 2004;54:109–122. PubMed

Wongtanachai J., Silamut K., Day N.P.J., Dondorp A., Chaisri U. Effects of antimalarial drugs on movement of Plasmodium falciparum. Southeast Asian J. Trop. Med. Public Health. 2012;43:1–9. PubMed PMC

Millholland M.G., Chandramohanadas R., Pizzarro A., Wehr A., Shi H., Darling C., et al. The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress. Mol. Cell Proteomics. 2011;10 PubMed PMC

Sinha A., Chu T.T.T., Dao M., Chandramohanadas R. Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci. Rep. 2015;5:9768. PubMed PMC

Li J., Lykotrafitis G., Dao M., Suresh S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl. Acad. Sci. U. S. A. 2007;104:4937–4942. PubMed PMC

Vale N., Aguiar L., Gomes P. Antimicrobial peptides: a new class of antimalarial drugs? Front. Pharmacol. 2014;5:275. PubMed PMC

Brown A.C., Moore C.C., Guler J.L. Cholesterol-dependent enrichment of understudied erythrocytic stages of human Plasmodium parasites. Sci. Rep. 2020;10:1–15. PubMed PMC

Maguire P.A., Prudhomme J., Sherman I.W. Alterations in erythrocyte membrane phospholipid organization due to the intracellular growth of the human malaria parasite, Plasmodium falciparum. Parasitology. 1991;102:179–186. PubMed

Kaushik N.K., Sharma J., Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar. J. 2012;11:256. PubMed PMC

Sam-Yellowe T.Y., Perkins M.E., Interaction M.E. Interaction of the 140/130/110 kDa Rhoptry Protein Complex Plasmodium falciparum with the Erythrocyte Membrane and Liposomes Erythrocyte invasion by the malarial par- asite is a multistep process involving se- quential events: surface attachment, m. Exp. Parasitol. 1991;171:161–171. PubMed

Ashkenazi A., Faingold O., Kaushansky N., Ben-Nun A., Shai Y. A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice. Blood. 2013;121:2244–2252. PubMed

Gazit E., Shai Y. Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. Biochemistry. 1993;32:12363–12371. PubMed

Hiratsuka T., Kato T. A fluorescent analog of colcemid, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-colcemid, as a probe for the colcemid-binding sites of tubulin and microtubules. J. Biol. Chem. 1987;262:6318–6322. PubMed

Makovitzki A., Avrahami D., Shai Y. Ultrashort antibacterial and antifungal lipopeptides. Proc. Natl. Acad. Sci. U. S. A. 2006;103:15997–16002. PubMed PMC

Ghosh J.K., Shaool D., Guillaud P., Cicéron L., Mazier D., Kustanovich I., et al. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J. Biol. Chem. 1997;272:31609–31616. PubMed

Hernández-Castañeda M.A., Lavergne M., Casanova P., Nydegger B., Merten C., Subramanian B.Y., et al. A profound membrane reorganization defines susceptibility of Plasmodium falciparum infected red blood cells to lysis by granulysin and perforin. Front. Immunol. 2021;12 PubMed PMC

Fink A., Ben Hur D., Wani N.A., Cohen H., Segev-Zarko L.-A., Arnusch C.J., et al. Development of nontoxic peptides for lipopolysaccharide neutralization and sepsis treatment. ACS Pharmacol. Transl. Sci. 2024;7:1795–1806. PubMed PMC

Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta Biomembr. 1999;1462:55–70. PubMed

Drab E., Sugihara K. Cooperative function of LL-37 and HNP1 protects mammalian cell membranes from lysis. Biophys. J. 2020;119:2440–2450. PubMed PMC

Denisov I.G., Grinkova Y.V., Lazarides A.A., Sligar S.G. Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 2004;126:3477–3487. PubMed

Xu X.P., Zhai D., Kim E., Swift M., Reed J.C., Volkmann N., et al. Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis. 2013;4:e683. PubMed PMC

Ahiya A.I., Bhatnagar S., Morrisey J.M., Beck J.R., Vaidya A.B. Dramatic consequences of reducing erythrocyte membrane cholesterol on Plasmodium falciparum. Microbiol. Spectr. 2022;10 PubMed PMC

Mita T., Tanabe K., Kita K. Spread and evolution of Plasmodium falciparum drug resistance. Parasitol. Int. 2009;58:201–209. PubMed

Wongsrichanalai C., Sibley C.H. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin. Microbiol. Infect. 2013;19:908–916. PubMed

Mangoni M.L., Saugar J.M., Dellisanti M., Barra D., Simmaco M., Rivas L. Temporins, small antimicrobial peptides with leishmanicidal activity. J. Biol. Chem. 2005;280:984–990. PubMed

Gelhaus C., Jacobs T., Andrä J., Leippe M. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother. 2008;52:1713–1720. PubMed PMC

Mor A. Multifunctional host defense peptides: antiparasitic activities. FEBS J. 2009;276:6474–6482. PubMed

Papo N., Seger D., Makovitzki A., Kalchenko V., Eshhar Z., Degani H., et al. Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide. Cancer Res. 2006;66:5371–5378. PubMed

Gagnon M.C., Strandberg E., Grau-Campistany A., Wadhwani P., Reichert J., Bürck J., et al. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry. 2017;56:1680–1695. PubMed

Papo N., Shai Y. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Biochemistry. 2004;43:6393–6403. PubMed

Maier A.G., van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front. Cell Infect. Microbiol. 2022;12 PubMed PMC

Mardirossian M., Grzela R., Giglione C., Meinnel T., Gennaro R., Mergaert P., et al. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 2014;21:1639–1647. PubMed

Bano N., Romano J.D., Jayabalasingham B., Coppens I. Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int. J. Parasitol. 2007;37:1329–1341. PubMed

Zhang X., Wang M., Zhu X., Peng Y., Fu T., Hu C.H., et al. Development of lipo-?-AA peptides as potent antifungal agents. J. Med. Chem. 2022;65:8029–8039. PubMed

Lambros C., Vandenberg J.P. Synchronization of plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 1979;65:418–420. PubMed

Dekel E., Rivkin A., Heidenreich M., Nadav Y., Ofir-Birin Y., Porat Z., et al. Identification and classification of the malaria parasite blood developmental stages, using imaging flow cytometry. Methods. 2017;112:157–166. PubMed

Grieco P., Carotenuto A., Auriemma L., Saviello M.R., Campiglia P., Gomez-Monterrey I.M., et al. The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: identification of a potent anti-Candida peptide. Biochim. Biophys. Acta. Biomembr. 2013;1828:652–660. PubMed

Alfandari D., Ben Ami Pilo H., Abou Karam P., Dagan O., Joubran C., Rotkopf R., et al. Monitoring distribution dynamics of EV RNA cargo within recipient monocytes and macrophages. Front. Cell Infect. Microbiol. 2022;11:739628. PubMed PMC

Fendl B., Weiss R., Fischer M.B., Spittler A., Weber V. Characterization of extracellular vesicles in whole blood: influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem. Biophys. Res. Commun. 2016;478:168–173. PubMed

Nečas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.

Nievergelt A.P., Banterle N., Andany S.H., Gönczy P., Fantner G.E. High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. Nat. Nanotechnol. 2018;13:696–701. PubMed

Van Rossum G. The Python language reference. Release 3.0.1 [Repr.] Python Software Foundation; Hampton, NH, Redwood City, CA: 2010. SoHo Books (Documentation for Python, Pt. 2)

Rotem E., Reuven E.M., Klug Y.A., Shai Y. The transmembrane domain of HIV-1 gp41 inhibits T-cell activation by targeting multiple T-cell receptor complex components through its GxxxG motif. Biochemistry. 2016;55:1049–1057. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...